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This paper investigates the receptivity of boundary layers due to distributed roughness
interacting with free-stream disturbances. Both acoustic and vortical perturbations
are considered. An asymptotic approach based on the triple-deck formulation has
been developed to determine the initial amplitude of the Tollmien–Schlichting wave to
the O(R−1/8) accuracy, where R is the global Reynolds number. In the case of vortical
disturbances, we show that the dominant contribution to the receptivity comes from
the upper deck as well as from the so-called edge layer centred at the outer reach of
the boundary layer. It is found that for certain forms of disturbances, the receptivity
is independent of their vertical structure and can be fully characterized by their slip
velocity at the edge of the boundary layer. A typical case is the vortical disturbance
in the form of a convecting wake, for which the same conclusion as above has been
reached by Dietz (1999) on the basis of measurements. Our theoretical predictions
are compared with the experimental data of Dietz (1999), and a good quantitative
agreement has been found. Such a comparison is the first to be made for distributed
vortical receptivity. Further calculations indicate that the vortical receptivity in general
is much stronger than was suggested previously. In the case of acoustic disturbances,
it is found that our first-order theory is in good agreement with experiments as well
as with previous theoretical results. But the second-order theory over-predicts, and
the possible reasons for this are discussed.

1. Introduction
One of the fundamental questions concerning laminar–turbulent transition in the

boundary layer is the so-called receptivity (Morkovin 1969; Reshotko 1976), which
refers to the process whereby external disturbances present in the environment (e.g.
in a free stream and/or on a wall) excite internal oscillations within the boundary
layer. When the free-stream turbulence level is low (below a few per cent), the
dominant boundary-layer response is Tollmien–Schlichting (T-S) waves. But high-
level free-stream turbulence tends to generate broad-band low-frequency motions,
i.e. the so-called Klebanoff modes, which undergo transient growth and may lead
to secondary instability. The present paper is concerned with the generation of T-S
waves. It is well-known that in a uniform free stream a general unsteady small-
amplitude perturbation can be expressed as a superposition of acoustic and vortical
modes (and entropy modes if the fluid is compressible) (Kovasznay 1953). The former
represents sound waves, while the latter is the vorticity fluctuation being convected
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by the free stream and is often referred to as a convecting gust. Because the length
and time scales of each mode do not satisfy the dispersion relation of T-S waves,
neither of them alone can excite any T-S waves. Therefore the first task of receptivity
study is to identify the scale-conversion mechanisms, which ‘tune’ the time and/or
length scales of the external disturbance so as to match those of the T-S waves. The
second task of course is to calculate the initial amplitude or equivalently the so-called
coupling coefficient.

The major breakthrough came with the seminal papers by Goldstein (1983, 1985)
and Ruban (1984), in which several important scale-conversion mechanisms have
been identified and quantified. The first of these involves an acoustic disturbance (i.e.
a sound wave) interacting with the non-parallel mean flow near the leading edge
to excite the so-called Lam–Rott eigensolution, which then undergoes wavelength
shortening and finally turns into a T-S wave near the lower branch of the neutral
curve (Goldstein 1983). This receptivity, however, turns out to be somewhat weak
because the wave may experience considerable decay before reaching its neutral-
stability point. A more efficient mechanism was identified independently by Goldstein
(1985) and Ruban (1984). It involves the interaction between a sound wave and a
rapidly varying mean flow, induced by a small localized roughness on the wall, or
by a sudden curvature change (such as the one that occurs at the juncture of the
leading-edge ellipse and the straight portion of the plate; see Goldstein & Hultgren
1987). The resulting unsteady forcing can excite a T-S wave if the frequency of the
sound and the length scale of the local mean flow are comparable with those of the
T-S wave. In the framework of triple-deck theory, the leading-order interaction takes
place in the lower deck since both the steady and unsteady perturbations concentrate
in that region.

A somewhat similar scale-conversion mechanism operates to generate a T-S wave
when a vortical disturbance interacts with a roughness. This has been analysed by
Duck, Ruban & Zhikharev (1996), again using a triple-deck formulation. See also
Kerschen (1991). The main difference from the acoustic disturbance is that a vortical
disturbance does not penetrate into the boundary layer in the sense that its signature
is exponentially small there (Gulyaev et al. 1989). Thus the dominant interaction
now occurs in the upper deck (and also in the so-called edge layer centred at the
outer reach of the boundary layer). Since the mean-flow distortion is weaker in
the upper deck, the coupling coefficient is found to be a factor R−1/8 smaller than
that in the corresponding acoustic case, where R is the global Reynolds number.
Choudhari (1996) studied the same kind of interaction between a three-dimensional
gust and a localized roughness using an approach based on the Orr–Sommerfeld (O-S)
equations. His calculations showed that the lower-frequency components of the gust
are a more effective T-S wave generator. A quantitative comparison between theory
and experiments has not been possible until recently, because earlier experimental
investigations (e.g. Kendall 1985, 1990) were conducted in uncontrolled conditions and
most information was qualitative. Controlled experiments have been carried out only
recently by Dietz (1996, 1998, 1999), who successfully introduced a single-frequency
vortical disturbance, a convecting wake, by vibrating a ribbon in the oncoming free
stream. His experiments provide for the first time quantitative data about the initial
amplitude of the T-S waves due to a convecting gust interacting with a wall roughness
element. In the case of localized roughness, Dietz compared his experimental data with
the calculations of Choudhari (1996) and also with the prediction by an asymptotic
formula of Kerschen (1991). The agreement with the former was reasonable, but
the latter turned out to be just about 40% of the measured value. Nevertheless, the
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evidence is strong enough to suggest that the basic mechanism proposed in previous
theoretical studies is a correct one.

Recently, Wu (1999) proposed a mechanism which is distinct from those mentioned
above. It involves the direct interaction between a vortical disturbance and a sound
wave of suitable frequencies and wavenumbers so as to achieve scale conversion.
Unlike the mechanism in the Goldstein–Ruban theory, the conversion of the external
scales does not require any form of non-homogeneity on the wall or in the mean flow,
and thus operates even in the simplest flows such as the flat-plate boundary layer.

In addition to the localized roughness, the receptivity due to distributed rough-
ness has also received considerable interest. It has been suggested that this type of
roughness is more representative of the practical situation. In theoretical studies, a
distributed roughness is conveniently modelled by a wavy wall, while in laboratories it
is simulated by arrays of equally spaced isolated roughness elements, placed near the
lower branch of the T-S waves that are to be excited (Wiegel & Wlezien 1993; Dietz
1999). Experiments show that the receptivity increases with the number of roughness
elements N, but approaches a limit as N becomes sufficiently large (N = 9 ∼ 13). The
final limit corresponds to the case of an infinite wavy wall, and is about one order of
magnitude larger than the localized receptivity.

The coupling coefficient of distributed receptivity has been computed by several
authors. In the case of an acoustic disturbance, Choudhari (1993) treated the contri-
bution from the distributed roughness as a superposition of that from isolated ones,
an idea originated from the work of Tam (1981). Choudhari’s analysis is based on
the finite-Reynolds-number approach, developed previously by Choudhari & Streett
(1992) and Crouch (1992a) for the localized receptivity and by Russian researchers (see
e.g. Zhigulev & Tumin 1987). A somewhat different finite-Reynolds-number formula-
tion was adopted by Crouch to study the distributed receptivity to acoustic (Crouch
1992b) as well as vortical disturbances (Crouch 1994). The key ‘device’ to determine
the T-S waves is an inhomogeneous amplitude equation. This equation, however, was
derived in a rather ad hoc manner, without making use of a superposition principle
(as Choudhari 1993 did) or a solvability condition. A feature of some concern is that
in the case of exact resonance, the forcing term in the amplitude equation exhibits a
singularity, a second-order pole, at the neutral point of the T-S wave.

In this paper, we shall investigate the distributed receptivity using the high-
Reynolds-number approach. The present work was motivated by two facts. First
it is desirable to provide a self-consistent mathematical description of the distributed
receptivity, in parallel to the work of Goldstein (1985), Ruban (1984) and Duck et al.
(1996) for the localized roughness. For the distributed receptivity, the non-parallel-
flow effect associated with the streamwise variation of the growth rate of the T-S
waves plays a key role. In particular, the magnitude of the generated T-S wave is di-
rectly related to this effect. This crucial issue can be addressed satisfactorily only in an
asymptotic framework. Moreover, in the case of vortical disturbances, the non-parallel
effect associated with the thickening of the boundary layer appears at leading order
in the edge layer. This effect is completely ignored by the calculations based on the
O-S equations, but can be properly taken into account by the high-Reynolds-number
approach.

Secondly, for both the acoustic and vortical disturbances, there are well-documented
experimental data, notably Dietz (1999) for the vortical receptivity and Wiegel &
Wlezien (1993) for the acoustic receptivity. It is now possible to make a detailed
quantitative comparison between the theory and laboratory measurements. For this
purpose, the asymptotic theory will be extended to the second order, by including
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the O(R−1/8) correction. Naturally one may be concerned with whether or not the
asymptotic approach will be accurate enough for the moderate Reynolds numbers,
given that it does not predict the neutral Reynolds number and growth rate accurately.
The work of Terent’ev (1981) demonstrates that this approach can be used effectively
to study the excitation of T-S waves despite the deficiency mentioned above. The
view that the asymptotic approach gives a more accurate prediction for receptivity
than for the dispersion was reaffirmed by Choudhari & Streett (1992). Indeed, our
final results, (3.124) and (4.38), show that the amplitudes of the T-S waves are not
sensitive to the inaccuracy in the predicted neutral Reynolds number.

It should be remarked that the literature on boundary-layer receptivity is rather
extensive. Here we have mentioned the contributions that are most relevant to the
present work. A more detailed survey was given in a recent paper (Wu 1999), and
references to Russian literature on this subject can be found in Duck et al. (1996).

The rest of the paper is organized as follows. In § 2, as a first step in formulating
the problem, the basic mechanism of the distributed receptivity is described in fairly
general terms. The relevant scalings are then introduced so as to develop an asymptotic
theory using the triple-deck framework. A wavy wall is used as an idealized model
of distributed roughness. The solution of the mean-flow distortion is obtained up
to O(R−1/8). The receptivity to a vortical disturbance is analysed in § 3. In order to
maintain maximum generality, the analysis is carried through without specifying the
vertical structure of the gust. The dominant contribution to the receptivity comes from
the upper deck as well as the edge layer. The interactions in these two regions are
analysed in § 3.1 and § 3.2 respectively. The main layer acts to facilitate the pressure–
displacement interplay between the upper and lower decks as in the standard triple
deck, and the solution is given in § 3.3. The forcing from the upper and edge layers is
transmitted to the lower deck and results in inhomogeneous systems, the solvability
conditions of which give rise to the amplitude equations. In § 3.5, we show that the
solutions to these equations can be used to determine the T-S wave amplitude up
to O(R−1/8) accuracy. We demonstrate that in certain conditions, the receptivity is
independent of the vertical structure of the gust. Appropriate coupling coefficients
are then defined to quantify the receptivity. In §4, we investigate the receptivity to an
acoustic perturbation. The leading-order contribution is from the lower deck (§ 4.3).
But there is an O(R−1/8) contribution from both the upper and main layers, and these
are analysed in § 4.1 and § 4.2. The required amplitude equations are derived in § 4.3.
Numerical solutions are presented in §5, where the theoretical results are compared
with the relevant experiments as well as with previous calculations. The conclusions
and implications of the present study are discussed.

2. Formulation and scalings
We consider the two-dimensional incompressible boundary layer over a semi-infinite

wavy wall. The oncoming flow is assumed to be uniform with velocity U∞, perturbed
by small-amplitude disturbances, which will be specified later. We define the Reynolds
number

R = U∞l/ν, (2.1)

where l is the typical distance from the leading edge to the location where the
receptivity commences, and ν is the kinematic viscosity.

The flow is to be described in the Cartesian coordinate system (x, y, z) with its origin
at the leading edge, where x and y are along and normal to the mean position of the
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wall respectively, and z is in the spanwise direction; x and z are non-dimensionalized
by l and y by lR−1/2. The time variable t is normalized by l/U∞. The velocity (u, v, w)
is non-dimensionalized by U∞, while the non-dimensional pressure p is introduced by
writing the dimensional pressure as (p∞ + ρU2∞p), where p∞ is a constant and ρ is the
fluid density.

The basic mechanism of the distributed receptivity is well understood from the
physical point of view, and can be explained in fairly general terms as follows.
Suppose first that the dispersion relation of the T-S wave is

∆(ω̂TS , α̂TS ; x) = 0, (2.2)

which relates the frequency ω̂TS and the wavenumber α̂TS at a given location x,
the dependence on which is parametric. In general for a given frequency ω̂TS , the
wavenumber α̂TS = α̂r + iα̂i is a complex number except at the neutral position x0.

In the case of an acoustic disturbance, the pressure fluctuation in the free stream
drives an oscillatory flow near the wall. In the incompressible limit, this flow is
proportional to e−iω̂st. On the other hand, the wall roughness induces a steady mean
flow proportional to eiα̂wx, where ω̂s and α̂w are the frequency of the sound and the
wavenumber of the roughness respectively. The interaction between the two generates
a forcing term proportional to ei(α̂wx−ω̂st). Now if

ω̂s = ω̂TS , α̂w ≈ Re (α̂TS ), (2.3)

the response to the forcing would be similar to, but not exactly the same as, the T-S
wave when x 6= x0. But when x ≈ x0, the relations in (2.3) imply that a resonance
occurs between the forcing and the T-S wave, leading to the generation of the latter.
Mathematically, the resonance means that in order for the inhomogeneous system at
the quadratic order to have an acceptable solution, the T-S wave solution must be
included in the expansion at a suitable lower order.

In the case of a vortical disturbance (gust), the velocity (and vorticity) fluctuation in
the free stream is proportional to exp (i(α̂cx− ω̂ct)). Since α̂c = ω̂c, there is no pressure
fluctuation at leading order, and as a result a vortical disturbance does not penetrate
into the boundary layer. But as in the case of the localized receptivity (cf. Duck et
al. 1996), an interaction with the mean-flow distortion takes place in the outer reach
of the boundary layer, producing a forcing proportional to exp (i(α̂w + α̂c)x− iω̂ct). A
resonance occurs in the vicinity of the lower-branch neutral point x0 if

ω̂c = ω̂TS , α̂w + α̂c ≈ Re (α̂TS ). (2.4)

It is noted that for a gust or a sound wave of a given frequency, there exists a
unique value of α̂w to satisfy exactly the second relation in (2.3) or (2.4). Conversely,
a roughness of a given wavelength requires the gust or sound to have a particular
frequency in order to have an exact resonance. In controlled experiments, one usually
imposes α̂w and varies ω̂c (or ω̂s) over a range in which the second relation in (2.3)
or (2.4) is satisfied only approximately. T-S waves may still be generated in this more
general case, but have a reduced magnitude. Such a tuned response to the forcing
frequency is an important feature of the distributed receptivity, and can be described
by introducing an appropriate detuning parameter (see later).

To calculate the coupling coefficient in each case, we shall develop an asymptotic
theory based on the triple-deck formalism; so we assume that R � 1. For a lower-
branch T-S wave, its frequency and wavenumber scale with the Reynolds number
as

ω̂TS = R2/8ω, α̂TS = R3/8α.
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Figure 1. Illustration of the receptivity process and the flow structure for the vortical receptivity.

Since the generated T-S wave inherits the frequency of the sound wave or gust, we
have

ω̂s = ω̂c = ω̂TS = R2/8ω, α̂c = R2/8αc.

Though αc ≡ ω, we shall retain the identity of αc for book-keeping purpose. The
resonant condition (2.3) or (2.4) shows that the wavenumber of the wall roughness
must scale as

α̂w = R3/8αw.

It is also convenient to introduce the faster variables

t̄ = R2/8t, x̄ = R3/8x, z̄ = R3/8z, (2.5)

and a small parameter

ε = R−1/8.

The important site of the receptivity process is the neutral point x0 of the T-S wave,
since the resonance condition can only be met there. Upstream of x0, the quadratic
roughness–gust or roughness–sound interaction generates a small-amplitude response,
which is regular. But as x0 is approached, the forced response tends to infinity (i.e.
becomes singular), and takes on the characteristics of the T-S wave. In order to
describe this crucial process of the forced response evolving into the T-S wave after
going through the resonance, it is necessary to consider the O(R−3/16) neighbourhood
of x0, where the non-parallel-flow effect becomes important in the sense that the
variation of both the growth rate and the amplitude occurs at the same scale (Ruban
1983, Hall & Smith 1984). We introduce

x1 = (x− x0)/R
−3/16. (2.6)

The amplitude of the T-S wave will be a function of x1, and matches to the forced
response upstream as x1 → −∞. Sufficiently downstream the T-S wave evolves into
the post-resonance region where it acquires an O(1) growth rate. Thus the whole
process consists of three stages as is illustrated in figure 1, the most important of
which is the resonance region. The key role of the O(R−3/16) vicinity of the neutral
point in receptivity was demonstrated in Wu (1999). See also Choudhari (1993).

One may note that the distributed receptivity is quite different from the isolated
receptivity in terms of physical process as well as the methods used to determine the
T-S wave amplitude. An isolated roughness has a continuous spectrum, and when
interacting with the unsteady disturbances produces a broad-band response in the
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boundary layer. The solution for the response can be expressed as a Fourier integral.
The amplitude of the T-S wave is obtained directly by evaluating the residue at the
simple pole of the integrand. But for the distributed receptivity, we shall introduce an
amplitude function A(x1) say and derive the equation governing A(x1). This procedure
is similar to that in Wu (1999).

Now it follows from (2.5) and (2.6) that

∂

∂t
→ R2/8 ∂

∂t̄
,

∂

∂x
→ R3/8 ∂

∂x̄
+ R3/16 ∂

∂x1

,
∂

∂z
→ R3/8 ∂

∂z̄
. (2.7)

The mean flow is taken to be the Blasius boundary layer, the profile of which is
UB(y). As y → 0,

UB(y)→ λy

where the skin friction

λ = χx−1/2 with χ ≈ 0.332. (2.8)

We further expand λ about x0, the location where the T-S wave becomes neutral,

λ = λ0 + R−3/16λ1x1, with λ1 = − 1
2
χx
−3/2
0 . (2.9)

Since the length scale l (see (2.1)) is taken to be the distance of the neutral point to
the leading edge, x0 will be assigned the value of unity.

For the triple deck to be applicable, the dimensional height of the wall waviness,
h∗, must be of O(R−5/8l) or smaller, and so we may write h∗/l = R−5/8h with h = O(1)
or smaller. For simplicity, we shall assume that the mean-flow distortion, and the
vortical and acoustic disturbances are all of sufficiently small magnitude that their
self-nonlinearities can be ignored. Formally this requires that

h� R−1/8, εc � R−1/8, εs � R−1/8, (2.10)

where εc and εs stand for the amplitudes of the streamwise velocities of the sound and
gust respectively. For such small-amplitude waviness, there is no loss of generality
to assume that the distribution of the roughness is purely sinusoidal since a more
general periodic pattern can be decomposed into Fourier series. Thus we take the
wall position to be given by

y = R−1/8Fwh(e
iαwx̄ + c.c.), (2.11)

where Fw is an order-one parameter representing the coefficient of the first term in
the Fourier series, and c.c. stands for complex conjugate.

In order to develop a second-order asymptotic theory which can predict the initial
amplitude of the T-S wave with O(R−1/8) accuracy, it is necessary (i) to retain the
O(R−1/8) correction to the leading-order forcing, and (ii) to take into account the
correction arising from the higher-order modification to the dispersion relation of the
T-S wave. In particular, the latter solution must be obtained up to O(R−2/8) so that
the detuning effect can be described to the required order of accuracy.

As the analysis is lengthy, readers who are more interested in the physical mech-
anisms and the final quantitative predictions rather than mathematical technicalities
could go directly to § 3.5 and the end of § 4, where we give the final results, (3.124) and
(4.38), the coupling coefficients for the acoustic and vortical receptivities respectively.
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2.1. The mean-flow distortion

In the main part of the boundary layer, the mean-flow distortion due to the wavy
wall is a small perturbation to the Blasius profile (UB, R

−1/2VB), that is

(U,V , P ) = (UB + εhUM, R
−1/2VB + ε2hVM, ε

2hPM),

where (UM,VM, PM) expand as

UM = {U(1)
M + εU

(2)
M + · · ·} eiαwx̄ + c.c.+ O(h) . . . ,

VM = {V (1)
M + εV

(2)
M + · · ·} eiαwx̄ + c.c.+ O(h) . . . ,

PM = {P (1)
M + εP

(2)
M + · · ·} eiαwx̄ + c.c.+ O(h) . . . .

 (2.12)

Here we can ignore the terms proportional to O(h) since h� ε as implied by (2.10).
It is well known that the leading-order perturbation has the solution

U
(1)
M = A

(1)
MU

′
B, V

(1)
M = −iαwA

(1)
MUB, (2.13)

where the constant A(1)
M is to be determined later. The second-order perturbation is

governed by

iαwU
(2)
M + V

(2)
M,y = 0, (2.14)

iαwUBU
(2)
M +U ′BV

(2)
M = −iαwP

(1)
M , (2.15)

iαwUBV
(1)
M = −P (2)

M,y, (2.16)

which are solved to give

V
(2)
M = −iαwA

(2)
MUB + iαwP

(1)
M UB

∫ y dy

U2
B

, (2.17)

U
(2)
M = A

(2)
MU

′
B − P (1)

M

{
UB

∫ y dy

U2
B

}′
, (2.18)

P
(2)
M = P̃

(2)
M − α2

wA
(1)
M

∫ y

0

U2
Bdy, (2.19)

where A(2)
M and P̃ (2)

M are constants to be found.
In the upper deck, where ȳ = R−1/8y, the steady flow can be written as

(U,V , P ) = (1, 0, 0) + ε2h(ūM, v̄M, p̄M) eiαwx̄ + c.c.,

with

(ūM, v̄M, p̄M) = (ū(1)
M , v̄

(1)
M , p̄

(1)
M ) + ε(ū(2)

M , v̄
(2)
M , p̄

(2)
M ) + · · · . (2.20)

The governing equations for p̄(j)
M and v̄(j)

M are

p̄
(j)
M,ȳȳ − α2

wp̄
(j)
M = 0, iαwv̄

(j)
M = −p̄(j)

M,ȳ (j = 1, 2).

It follows that p̄(j)
M = P̄

(j)
M e−αwȳ and v̄

(j)
M = −iP̄ (j)

M e−αwȳ . The continuity equation gives

the streamwise velocities ū(j)
M = −P̄ (j)

M e−αwȳ . The pressure and vertical velocity in the
upper deck match their counterparts in the main layer if

P̄
(1)
M = P

(1)
M , P̄

(2)
M = P̃

(2)
M − α2

wA
(1)
M I2, (2.21)

P
(1)
M = αwA

(1)
M , −iP̄ (2)

M = iαwP
(1)
M J∞ − iαwA

(2)
M , (2.22)

where the constants I2, J∞ are defined by (A 3) and (A 5) of Appendix A respectively.
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In the lower deck, the appropriate transverse coordinate is

Y = R1/8y.

In terms of Y , the wall position is given as

Y = hFw(eiαwx̄ + c.c.). (2.23)

The solution can be written as

(U,V , P ) = ε(λY , 0, 0, ) + εh(ŨM, ε
2ṼM, εP̃M) eiαwx̄ + c.c.

with

(ŨM, ṼM, P̃M) = (Ũ(1)
M , Ṽ

(1)
M , P̃

(1)
M ) + ε(Ũ(2)

M , Ṽ
(2)
M , P̃

(2)
M ) + · · · . (2.24)

Since h� 1, the leading-order terms satisfy the linearized boundary-layer equations

iαwŨ
(1)
M + Ṽ

(1)
M,Y = 0, (2.25)

iαwY Ũ
(1)
M + λṼ

(1)
M = −iαwP

(1)
M + Ũ

(1)
M,Y Y , (2.26)

where we have used the fact that P̃ (1)
M = P

(1)
M . The no-slip condition on the wall is

approximated, after linearization, by

Ũ
(1)
M (0) = −λFw, Ṽ

(1)
M (0) = 0,

while the matching condition with the main-deck solution is

Ũ
(1)
M → λA

(1)
M as Y →∞.

Solving these equations, we obtain

Ũ
(1)
M = λFw

{
1

D(αw)

∫ ζ

0

Ai(ζ) dζ − 1

}
, (2.27)

P̄
(1)
M = P

(1)
M = P̃

(1)
M = −α−2

w (iαwλ)
5/3Ai′(0)Fw/D(αw), (2.28)

where ζ = (iαwλ)
1/3Y , Ai is the Airy function, and

D(αw) =

∫ ∞
0

Ai(ζ) dζ + α−3
w (iαwλ)

5/3Ai′(0). (2.29)

The second-order correction Ũ(2)
M , Ṽ (2)

M and P̃ (2)
M satisfy

iαwŨ
(2)
M + Ṽ

(2)
M,Y = 0, (2.30)

iαwY Ũ
(2)
M + λṼ

(2)
M = −iαwP̃

(2)
M + Ũ

(2)
M,Y Y . (2.31)

It can be shown that

Ṽ
(2)
M,ζ = C2

∫ ζ

0

Ai(ζ) dζ

with C2 being a constant. Matching Ṽ (2)
M,ζ with V (2)

M,y in the main part of the boundary
layer yields

C2

∫ ∞
0

Ai(ζ) dζ = −(iαwλ)
2/3
{
A

(2)
M − P (1)

M J0

}
, (2.32)
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with J0 defined by (A 4). The no-slip condition on the wall implies V (2)
M,Y Y Y (0) = α2

wP̃
(2)
M ,

i.e.

C2Ai′(0) = α2
w(iαwλ)

−1P̃
(2)
M . (2.33)

It follows from (2.21)–(2.22) and (2.32)–(2.33) that

P̄
(2)
M = −αwP

(1)
M

D(αw)

{
α−3
w (iαwλ)

5/3Ai′(0)(J∞ − J0) + I2

∫ ∞
0

Ai(ζ) dζ

}
, (2.34)

P̃
(2)
M = −α−2

w (iαwλ)
5/3P

(1)
M (J∞ − J0 − I2)/D(αw), (2.35)

Ũ
(2)
M =

λP
(1)
M

D(αw)
(J∞ − J0 − I2)

∫ ζ

0

Ai(ζ) dζ. (2.36)

From the x-momentum equations in (2.26) and (2.31), the vertical velocity components
Ṽ

(1)
M and Ṽ (2)

M are obtained as

Ṽ
(j)
M =

1

λ

(
Ũ

(j)
M,Y Y − iαwY Ũ

(j)
M − iαwP̃

(j)
M

)
(j = 1, 2). (2.37)

3. Receptivity to the vortical disturbance
3.1. Upper deck and nonlinear interaction

When both the roughness and the vortical disturbance are present, the expansion in
the upper deck takes form

u = (1, 0, 0) + ε2huM + εcuc

+εεchR
1/16(ū1 + εū2 + ε2ū3)E + ε2εch(u4 + εū5E) + c.c.+ · · · , (3.1)

p = ε2hp̄M eiαwx̄ +εεchR
1/16(p̄1 + εp̄2 + ε2p̄3)E + ε2εch(p4 + εp̄5E) + c.c.+ · · · , (3.2)

where a bold letter denotes a vector, and uM = (ūM, v̄M) eiαwx̄ denotes the mean-flow
distortion in the upper deck as given by (2.20). For convenience, we define

E = exp {i(αx̄+ βz̄ − ωt̄ )},
where the scaled wavenumber and frequency of the T-S wave, α and ω, expand as
(Smith 1979a)

α = α1 + εα2 + ε2α3 + O(ε3 log ε), (3.3)

ω = ω1 + εω2 + ε2ω3 + O(ε3 log ε). (3.4)

The O(εc) term in (3.1)–(3.2) represents the convecting gust. In general the gust
is random in nature and must be represented as a (stochastic) Fourier integral. For
simplicity, in the present study we consider the simplest situation where the gust
consists of only one Fourier component, that is

uc = ūc(ȳ) eiαc(εx̄−t̄ )+iβz̄ + c.c., (3.5)

where the frequency and the spanwise wavenumber of the gust have the same scaling
as those of the T-S wave respectively. Note that we allow the vertical variation of the
gust to occur on the upper-deck variable, much faster than was assumed in Duck et
al. (1996). For the specific purpose of calculating the gust/mean-flow interaction, the
present scaling results in a more general setting, from which the case considered by
Duck et al. can be recovered by taking a suitable limit (see § 3.5).

A difficulty in studying the receptivity to the vortical disturbance has been the
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specification of a realistic distribution ūc. The recent experiments of Dietz (1999),
in which the gust is a convecting wake produced by a vibrating ribbon in the
oncoming flow, show that provided the centre of the wake is far away from the
plate, the detailed structure of ūc becomes irrelevant. As far as the receptivity is
concerned, the only relevant parameter that characterizes the wake is its slip velocity,
i.e. the streamwise velocity at the outer edge of the boundary layer. We shall provide
mathematical evidence to support this conclusion, which is important as it will enable
us to circumvent the difficulty mentioned above. Our analysis will therefore proceed
independently of ūc. But as a reference, let us consider the case where the vorticity
fluctuation in the far field (i.e. ȳ →∞) is given by

Ω∞ exp {iαc(εx̄− t̄) + iβvȳ + iβz̄}. (3.6)

In the ȳ = O(1) region, ūc ≡ (ūc, εv̄c, εw̄c) has the solution

ūc = u∞ eiβvȳ +
iε2αc

γ
v∞ e−γȳ ,

v̄c = v∞(eiβvȳ − e−γȳ),

w̄c = w∞ eiβvȳ +
iβ

γ
v∞ e−γȳ ,

 (3.7)

where γ = (ε2α2
c + β2)1/2, and u∞ ≡ (u∞, εv∞, εw∞) is related to Ω∞ by the relation

u∞ =
i

|k|2k × Ω∞, k ≡ (εαc, βv, β).

It follows immediately that k · u∞ = 0, i.e.

αcu∞ + βvv∞ + βw∞ = 0. (3.8)

As was mentioned earlier, experimental measurements are usually carried out
under the condition where the detuning is present. In order to be able to make a
comprehensive comparison, we include the detuning effect in our theory by allowing
(αw + εαc) to have an O(R−3/16) difference from α, that is αw + εαc = α + R−3/16αd
with αd = O(1). For a gust with a given frequency ωc and a wavy wall with the
wavenumber αw , the detuning parameter αd is given by

αd ≈ R3/16
[
(αw + εαc)− (α1 + εα2 + ε2α3)

]
. (3.9)

As will become clear, for a complete second-order receptivity theory, αd must have an
O(ε) accuracy. This is the reason why the O(ε2) correction to the dispersion relation
has been included in (3.9), because neglecting this higher-order term will cause an
error of O(R−1/16) in αd.

The O(εεchR
1/16) terms in (3.1)–(3.2) stand for the T-S wave, and they must be

included to ensure that the forced problem at the next order has an acceptable solution.
For our purpose, we only need p̄1 and v̄1. They are governed by the equations

∂2p̄1

∂ȳ2
− {α2

1 + β2
}
p̄1 = 0, iα1v̄1 = −∂p̄1

∂ȳ
, (3.10)

which have the solutions

p̄1 = P1A(x1) e−γ1ȳ , v̄1 = − iγ1

α1

P1A(x1) e−γ1ȳ , (3.11)

with γ2
1 = α2

1 +β2 and P1 being a constant. The function A(x1) is the amplitude of the
T-S wave, the determination of which is the main purpose of the present paper.
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In the expansions (3.1)–(3.2), the terms with subscripts ‘2’ and ‘3’ represent the O(ε)
and O(ε2) corrections to the T-S wave solution respectively (which also applies to
the main- and lower-deck expansions below). These can be solved to obtain α2, ω2,
α3 and ω3 in (3.3)–(3.4), via a procedure that is a slight extension of that in Smith
(1979a) to the three-dimensional T-S wave. We shall only present the calculation of
the terms with subscript ‘2’. The details of calculating the terms with subscript ‘3’ is
of little relevance for the calculation of receptivity; so we only give the final result in
Appendix A.

The governing equations for p̄2 and v̄2 in (3.1)–(3.2) are

p̄2,ȳȳ − (α2
1 + β2)p̄2 = 2α1α2p̄1, iα1v̄2 + i(α2 − ω1)v̄1 = −p̄2,ȳ . (3.12)

We find that

p̄2 = P̄2 e−γ1ȳ −α1α2

γ1

AP1ȳ e−γ1ȳ , (3.13)

where P̄2 is an arbitrary function of x1. Substituting p̄2 into the equation for v̄2, we
find that as ȳ → 0

v̄2 → − iγ1

α1

P̄2 + i

{
(α2 − ω1)γ1

α2
1

− α2

γ1

}
AP1. (3.14)

We now turn to the O(ε2εch) terms, which are driven directly by the interaction
between the convecting gust and the mean-flow distortion. Substituting (3.1)–(3.2)
into the Navier-Stokes equations, we obtain

∇ · u4 = −∂u1

∂x1

E, (3.15)

∂

∂x̄
u4 = −∇p4 −

{
∂u1

∂x1

+
∂p̄1

∂x1

i

}
E − (uM · ∇)uc − (uc · ∇)uM, (3.16)

where the operator ∇ (and ∇2 below) are defined with respect to the scaled variables
x̄, ȳ and z̄. Equations (3.15)–(3.16) can be reduced to a single equation for the
pressure p4:

∇2p4 = −2iα1A
′(x1)P1 e−γ1ȳ E − Rp, (3.17)

where

Rp = ∇ · {(uM · ∇)uc + (uc · ∇)uM} . (3.18)

After a straightforward calculation aided by (3.8), we find that Rp = R̄p eiαdx1 E + c.c.
with

R̄p(ȳ) = 2αw
(
iū′c + 2iεαcūc + iεβw̄c − ε2αcv̄c

)
v̄M, (3.19)

where v̄M = −i(P̄ (1)
M + P̄

(2)
M ) e−αwȳ with P̄

(1)
M and P̄

(2)
M given by (2.28) and (2.34) respec-

tively. The solutions for p4 and u4 take the form p4 = (p̄4E+ c.c.) and u4 = (ū4E+ c.c.).
The function p̄4 is found to be

p̄4 =

{
P4 +

iα1

γ1

A′(x1)P1ȳ

}
e−γ1ȳ −Q̄p eiαdx1 , (3.20)



Receptivity of boundary layers with distributed roughness 103

where P4 is an undetermined function of x1 representing the complementary solution,
while

Q̄p = e−γ1ȳ

∫ ȳ

0

e2γ1ȳ1

∫ ȳ1

∞
R̄p(ȳ2) e−γ1ȳ2 dȳ2 dȳ1. (3.21)

By substituting p4 into the vertical momentum equation in (3.16), it can be shown
that

v̄4 = (iα1)
−1

{
− [i(αw−εαc)ūc − iεβw̄c − ε(αw − εαc)v̄c] v̄M eiαdx1

+

[
− iα1

γ1

A′P1 + γ1P4 +
iγ1

α1

A′P1 + iα1A
′P1ȳ

]
e−γ1ȳ

+

[
eγ1ȳ

∫ ȳ

∞
R̄p e−γ1ȳ1 dȳ1 − γ1Q̄p

]
eiαdx1

}
. (3.22)

As ȳ → 0,

v̄4 → (iα1)
−1

{
F1 eiαdx1 − iα1

γ1

A′P1 + γ1P4 +
iγ1

α1

A′P1

}
+(iα1)

−1

{
iαw
[
αwūc(0) + ū′c(0)

]
v̄M(0) eiαdx1 −

(
γ2

1P4− i(α2
1−β2)

α1

A′P1

)}
ȳ

+ · · · , (3.23)

where

F1 = −i [(αw − εαc)ūc(0)− εβw̄c(0)] v̄M(0)−
∫ ∞

0

R̄p(ȳ) e−γ1ȳ dȳ (3.24)

is the forcing due to the vorticity–roughness interaction in the upper layer. It turns
out that there is further forcing arising from the so-called edge layer. For the two-
dimensional case, Duck et al. (1996) correctly included the leading-order contribution
from the edge layer† by arguing that the slopes of the streamlines in the upper
and main decks are the same (to leading order). But it seems impossible to use that
argument to obtain the higher-order contribution. In the next subsection, we shall
consider the interaction in the edge layer in some detail.

The pressure p̄5 in (3.2) satisfies

p̄5,ȳȳ − (α2
1 + β2)p̄5 = 2α1α2p̄4 − 2iα1p̄2,x1

− 2iα2p̄1,x1
, (3.25)

and has the solution

p̄5 =
{
P̄5 + (iβ2α2A

′P1 + iα1γ
2
1P̄2,x1

− α1α2γ
2
1P4)γ

−3
1 ȳ − iα2

1α2γ
−2
1 A′P1ȳ

2
}

e−γ1ȳ

−2α1α2

{
e−γ1ȳ

∫ ȳ

0

e2γ1ȳ1

∫ ȳ1

∞
Q̄p(ȳ2) e−γ1ȳ2 dȳ2dȳ1

}
eiαdx1 . (3.26)

The solution for the velocity v̄5 may be found from

iα1v̄5 + i(α2 − ω1)v̄4 + v̄2,x1
= −p̄5,ȳ . (3.27)

By substituting in (3.14), (3.22) and (3.26), it can be shown that as ȳ → 0

v̄5 → Γ−
{

i(α2−ω1)

α2
1

(
iαwūc(0)v̄M(0) +

∫ ∞
0

R̄p e−γ1ȳ dȳ

)
+

iα2

γ1

∫ ∞
0

ȳR̄p e−γ1ȳ dȳ

}
eiαdx1

+ · · · , (3.28)

† During the review process of the present paper, the author noted that Ruban, Duck &
Zhikharev (1996) included this leading-order contribution by analysing the edge layer.
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where Γ is defined by

Γ = −i
γ1

α1

P̄5 + iα−1
1 γ−3

1 (iβ2α2A
′P1 + iα1γ

2
1P̄2,x1

− α1α2γ
2
1P4) + γ1α

−2
1 P̄2,x1

+iγ1α
−2
1 (α2 − ω1)P4 + α−3

1 γ−1
1 [α2

1α2 − (α2 − ω1)(α
2
1 + 2β2)]A′P1. (3.29)

In contrast to the standard triple-deck, the vertical velocities v̄4 and v̄5 in the upper
deck do not match directly with those in the main deck because of the edge layer
between them.

3.2. Analysis of the edge-layer interaction

As was first pointed out by Gulyaev et al. (1989), a vortical disturbance is largely
‘absorbed’ by a relatively thin edge layer, which sits on the outer reach of the boundary
layer (see figure 1). The Blasius boundary profile there has the approximation

UB ∼ 1− â

ŷ − b̂ e−(ŷ−b̂)2/4,

where ŷ = y/x1/2 is the Blasius similarity variable, â ≈ 0.46 and b̂ ≈ 1.72. The edge

layer is centred at y = (ŷ0 + b̂)x1/2 � 1 and has the width δ = 2/ŷ0 � 1, where ŷ0 is
determined by

ŷ3
0 eŷ

2
0/4 = 4âR1/4, so that ŷ0 ≈ (logR)1/2.

The local transverse variable is defined by

η̂ = (ŷ − ŷb)/δ with ŷb = ŷ0 + b̂,

and thus η̂ is related to the upper-deck variable ȳ via

ȳ = εy = εx1/2(ŷb + δη̂). (3.30)

We now show that the vortical disturbance, while undergoing rapid reduction within
the edge layer, interacts with the mean-flow distortion, to make a contribution
comparable with that from the upper deck to the receptivity.

The flow in this region has the expansion

u = [1−ε2δ−2 e−η̂ + · · ·]+εc[ûc(η̂) + εδû(1)
c (η̂) + · · ·] eiεαc(x̄−t̄ )+iβz̄ +ε2h[ūM(0) + · · ·] eiαwx̄

+εεchR
1/16[A(x1)ū1(0) + · · ·]E + εδ−1εch[û4 + εû5 + · · ·]E + c.c.+ · · · ,

v = ε2εcδ[v̂c(η̂) + εδv̂(1)
c (η̂) + · · ·] eiεαc(x̄−t̄)+iβz̄

+ε2h[v̄M + εŷbx
1/2(−αwv̄M(0)) + εδ(−αwv̄M(0))x1/2η̂ + · · ·] eiαwx̄

+εεchR
1/16[A(x1)v̄1(0) + · · · ]E + ε2εch[v̂4 + εv̂5 + · · ·]E + c.c.+ · · · ,

w = εcδ[ŵc(η̂) + εδû(1)
c (η̂) + · · ·] eiεαc(x̄−t̄)+iβz̄ +εεchR

1/16[A(x1)w̄1(0) + · · ·]E
+εδ−1εch[ŵ4 + εŵ5 + · · ·]E + c.c.+ · · · ,

p = ε2h[p̄M(0) + · · ·] eiαwx̄ +εεchR
1/16[A(x1)P1 + P̄2 + · · ·]E

+ε2εch[P4 + P̄5 + · · ·]E + c.c.+ · · · ,
where the terms representing the mean-flow distortion and the T-S wave are just
the Taylor expansions of the corresponding upper-deck solutions. The solution for
the gust was first considered by Gulyaev et al. (1989), and was developed in more
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detail by Duck et al. (1996) for the two-dimensional case and by Leib, Wundrow &
Goldstein (1999) for the three-dimensional case. The leading-order terms, ûc, v̂c and
ŵc, satisfy†

iαcûc + x−1/2v̂′c(η̂) + iβŵc = 0,

û′′c (η̂) + û′ + e−η̂(iαcxûc − x1/2v̂c) = 0,

ŵ′′c (η̂) + ŵ′c + (iαcx) e−η̂ ŵc = 0,

 (3.31)

subject to the matching conditions with the slip velocities of the gust at the edge of
the boundary layer, namely

ûc → [
ūc(0) + εŷbx

1/2ū′c(0)
]
, ŵc → [

w̄c(0) + εŷbx
1/2w̄′c(0)

]
as η̂ →∞.

As was pointed out by Gulyaev et al. (1989), the û′c and ŵ′c terms in their respective
equations are associated with the expanding of the boundary layer. Thus in the edge
layer the non-parallelism is a leading-order effect. This implies that the use of the
O-S equation to calculate the signature of the gust is not completely justified.

The relevant solution for ŵc is given by Leib et al. (1999):

ŵc = πi[w̄c(0) + εŷbx
1/2w̄′c(0)](iαcx)1/2 e−η̂/2 H (1)

1 (ζ̂), (3.32)

where H (1)
1 is the first-order Hankel function in the usual notation, and

ζ̂ = 2(iαcx)1/2 e−η̂/2 .

Eliminating ûc and ŵc between the equations in (3.31) yields

v̂′′′c + v̂′′c + iαcx e−η̂(v̂′c + v̂c) = 0.

The appropriate solution is (cf. Duck et al. 1996)

v̂c = −2π{αcūc(0) + βw̄c(0) + εŷbx
1/2[αcū

′
c(0) + βw̄′c(0)]}x1/2ζ̂2

∫ ζ̂

∞
ζ̂−3H

(1)
0 (ζ̂) dζ̂,

(3.33)

where H (1)
0 denotes the Hankel function of order zero. The exact solutions for û(1)

c ,
v̂(1)
c and ŵ(1)

c are not needed; all that we require is that

û(1)
c → ū′c(0)x1/2η̂ as η̂ →∞, and û(1)

c → 0 as η̂ → −∞.
The edge-layer solutions (3.32) and (3.33) are valid for arbitrary x. But in the following
analysis of the gust–roughness interaction, x will be assigned the value x0 = 1.

The terms with the subscripts ‘4’ and ‘5’ in the expansion are directly driven by the
vorticity–roughness interaction. Strictly speaking, (û5, v̂5, ŵ5) should expand as power
series of δ, i.e. û5 = δ−1û

(1)
5 + û

(2)
5 + δû

(3)
5 + · · · etc. However, such a formal procedure

can be avoided by tactically retaining the O(εδ−1) forcing terms in the equation for
(û4, v̂4), and the O(δ) terms in the equations for (û5, v̂5, ŵ5). This leads to

iα1û4 + v̂4,η̂ = 0, iα1û4 = −(1− εŷbαw)v̄M(0)û′c(η̂), ŵ4 ≡ 0; (3.34)

iα1û5 + v̂5,η̂ + iβŵ5 = −δA′ū1(0)− iα2û4,

† Note that the two-dimensional version of the equations is the same as that for the so-called
Brown–Stewartson (1973) eigensolution, but the latter solution matches to an outer solution which
is viscous in nature.



106 X. Wu

iα1û5 + i(α2 − ω1)û4 = −δ[iα1P̄4 + A′P1 + A′ū1(0)]− δv̄M(0)û(1)
c,η̂ ,

−δ[iαwūM(0)ûc(η̂)− αwv̄M(0)η̂û′c(η̂)],

iα1ŵ5 = −δ[iβP̄4 + A′w̄1(0)]− v̄M(0)ŵ′c(η̂).

These equations can be solved to give

v̂4 = C4 + (1− εŷbαw)v̄M(0)ûc(η̂), (3.35)

v̂5 = C5 +
ω1

α1

(1− εŷbαw)v̄M(0)ûc(η̂) + δ

[
iγ2

1

α1

P̄4 + (1− β2

α2
1

)A′P1

]
η̂ +

β

α1

v̄M(0)ŵc(η̂)

−δαwv̄M(0)

[
η̂ûc(η̂)− 2

∫ η̂

−∞
ûc(η̂)dη̂

]
+ δv̄M(0)û(1)

c (η̂) (3.36)

where C4 and C5 are functions of x1, to be found by matching with the upper-deck
solution. It is straightforward to write down the asymptote of the edge-layer solution
(v̂4 + εv̂5) as η̂ →∞. On re-writing it in terms of ȳ (see (3.30)) and matching with the
upper-deck solution (3.23) and (3.28), we find that

C4 = (iα1)
−1

{
F1 eiαdx1 +

[
− iα̂1

γ̂1

A′P1 + γ1P4 +
iγ1

α1

A′P1

]}
+

{
−
[
ūc(0) + ε

β

α1

w̄c(0)

]
v̄M(0) + 2εŷbαwūc(0)v̄M(0)

}
eiαdx1 ,

C5 = Γ +

{
iγ2

1

α1

P4 +

(
1− β2

α2
1

)
A′P1

}
ŷb − ω1

α1

v̄M(0)ūc(0)− 2δαwv̄M(0)Jc,

−
{

i(α2−ω1)

α2
1

(
iαwūc(0)v̄M(0) +

∫ ∞
0

R̄p e−γ1ȳ dȳ

)
+

iα2

γ1

∫ ∞
0

ȳR̄p e−γ1ȳ dȳ

}
eiαdx1 ,

where

Jc = −
[
(ūc(0) +

β

αc
w̄c(0)) +

(
2γE + log αc − 1

2
πi
)
ūc(0)

]
with γE ≈ 0.5772 being Euler’s constant.

3.3. The main-deck solution

In the main part of the boundary layer, where y = O(1), the solution expands as

u = UB + εhUM + εchR
1/16[AU1 + εU2 + ε2U3]E + εεch(U4 + εU5)E + · · · , (3.37)

v = ε2hVM + εεchR
1/16[AV1 + εV2 + ε2V3]E + ε2εch(V4 + εV5)E + · · · , (3.38)

w = εchR
1/16[AW1 + εW2 + ε2W3]E + εεch(W4 + εW5)E + · · · , (3.39)

p = ε2hPM + εεchR
1/16[AP1 + εP2 + ε2P3]E + ε2εch(P4 + εP5)E + · · · . (3.40)

Since no further interaction takes place there, the components on the T-S wave scales
arise merely as the response to the forcing from the upper and edge layers, and are
governed by the standard main-deck equations. Here instead of expanding UB about
x0, it is more convenient to work out the main-deck solutions for an arbitrary x
first, and subsequently expand their large- and small-y asymptotes before matching
with the upper- and lower-deck solutions. The leading-order streamwise and vertical
velocities of the T-S wave have the familiar solution

U1 = B1U
′
B, V1 = −iα1B1UB, W1 = 0, (3.41)
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where B1 is a constant and is related to P1 via

α2
1B1 = γ1P1, (3.42)

a relation provided by matching (3.41) to the upper-deck solution (3.11).
The terms U2, V2 etc. stand for the O(R−1/8) correction to the T-S wave solution,

and they satisfy

iα1U2 + V2,y + iβW2 = −iα2AU1, (3.43)

iα1UBU2 +U ′BV2 = −i(α2UB − ω1)AU1 − iα1AP1, (3.44)

iα1UBW2 = −iβAP1, iα1AUBV1 = −P2,y . (3.45)

They are solved, after inserting in (3.41), to give (cf. Ryzhov & Terent’ev 1977; Smith
1979a)

V2 = −iα1B2UB + iω1AB1 + iγ2
1α
−1
1 AP1UB

∫ y dy

U2
B

, (3.46)

P2 = P̃2 − α2
1AB1

∫ y

0

U2
Bdy, (3.47)

where B2 and P̃2 are functions of x1 to be determined later. It is easy to show that as
y →∞

V2 → (iγ2
1α
−1
1 AP1)y +

(−iα1B2UB + iω1AB1 + iγ2
1α
−1
1 AP1J∞(x)

)
+ · · · ,

P2 → (−α2
1AB1)y +

(
P̃2 − α2

1AB1I2(x)
)

+ · · · ,
}

(3.48)

where J∞(x) and I2(x) are given by (A 5) and (A 3) respectively.
The governing equations for U4 and V4 are

iα1U4 + V4,y = −A′U1, iα1UB +U ′BV4 = −A′U ′BU1,

while at the next order, the functions V5 and P5 satisfy

UBV5,y −U ′BV5 =

(
1− β2

α2
1

)
A′P0 + iγ2

1α
−1
1 P4 − iω1U4, (3.49)

UB(iα1V4 + A′V1) = −P5,y . (3.50)

These equations can be solved in sequence to give

U4 = B4U
′
B, V4 = −(A′B1 + iα1B4)UB, W4 = 0; (3.51)

V5 = −iα1B5UB + iω1B4 +

{(
1− β2

α2
1

)
P1A

′ + iγ2
1α
−1
1 P4

}
UB

∫ y dy

U2
B

, (3.52)

P5 = P̃5 − (α2
1B4 − 2iα1A

′B1)

∫ y

0

U2
Bdy, (3.53)

where B4, B5 and P̃5 are unknown functions of x1. The large-y asymptotes of the
main-deck solutions depend on x through the integrals I2(x) and J∞(x) (see e.g. (3.48)),
while their small-y asymptotes depend on x via the wall shear λ(x). Before carrying
out the matching, it is necessary to expand these asymptotes about x0 by using (A 6)
and (2.9), and rewrite the resulting expression in terms of x1 and re-order. For brevity,
we shall omit the details of these expansions, but merely illustrate this by considering
the asymptote of P2 as given in (3.48). It can be rewritten as

P2 → (−α2
1AB1)y + (P̃2 − α2

1AB1I2(0)) + R−3/16{ 1
2
α2

1AB1I2(0)x1}+ · · · .
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The O(R−3/16) term proportional to x1 will affect the matching of the terms which are
smaller by O(R−3/16), i.e. the terms with the subscript ‘5’. Hereafter, I2, J∞ and J0 are
all evaluated at x0 unless stated otherwise.

Now since there is no pressure variation across the edge layer, the pressure in the
main deck actually matches directly with that in the upper deck, leading to

P̄2 = P̃2 − α2
1AB1I2, (3.54)

P̄5 = P̃5 − (α2
1B4 − 2iα1A

′B1)I2 − 1
2
α2

1AB1I2x1. (3.55)

The vertical velocity at O(ε2εchR
1/16) is unaffected by the presence of the edge layer

and thus matches with its upper-deck counterpart,

−iα1B2 + iω1AB1 +
iγ2

1

α1

AP1J∞ = − iγ1

α1

P̄2 + i

{
(α2 − ω1)γ1

α2
1

− α2

γ1

}
AP1. (3.56)

Matching the vertical velocity at O(ε2εch) and O(ε3εch) with the edge-layer solution
gives

α2
1B4 − 2iα1A

′(x1)B1 = γ1P4 − iα1

γ1

A′(x1)P1 + Fv eiαdx1 , (3.57)

−iα1B5 + iω1B4 +

{(
1− β2

α2
1

)
P1A

′ + iγ2
1α
−1
1 P4

}
J∞ + 1

2
iγ2

1α
−1
1 AP1J∞x1

= Γ + (iα1)
−1Fc eiαdx1 , (3.58)

where

Fv = −i[(αw − εαc)ūc(0)− εβw̄c(0)]v̄M(0)−
∫ ∞

0

R̄p(ȳ) e−γ1ȳ dȳ

−i[α1ūc(0) + εβw̄c(0)]v̄M(0) + εŷb(2iα1αw)v̄M(0)ūc(0) (3.59)

is the main forcing that leads to the generation of the T-S wave, and

Fc = −iω1v̄M(0)ūc(0)− 2iδα1αwv̄M(0)Jc

+
(α2 − ω1)

α1

{
iαwv̄M(0)ūc(0) +

∫ ∞
0

R̄p e−γ1ȳ dȳ

}
+
α1α2

γ1

∫ ∞
0

ȳR̄p e−γ1ȳ dȳ. (3.60)

For later reference, we perform integration by parts in the integral in (3.59) to obtain∫ ∞
0

R̄p(ȳ) e−γ1ȳ dȳ =
2iαwv̄M(0)

αw + γ1

{
ε[2αcūc(0) + βw̄c(0)]

+

∫ ∞
0

[(αw+γ1)ū
′
c + ε(2αcū

′
c+βw̄

′
c)] e−(αw+γ1)ȳ dȳ

}
+O(ε2), (3.61)

where the O(ε2) term in the integrand has been legitimately neglected.

3.4. The lower-deck response

In the lower deck, where Y = R1/8y = O(1), the mean flow is approximated, to
the required order, by R−1/8λY , with the skin friction λ given by (2.9). The solution
expands as

u = ε(λ0+R−3/16λ1x1)Y + εhŨM eiαwx̄+εchR
1/16[A(x1)Ũ1 + εŨ2 + ε2Ũ3]E

+εεch(Ũ4 + εŨ5)E + c.c.+ · · · , (3.62)
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v = ε3hṼM eiαwx̄ +ε2εchR
1/16[A(x1)Ṽ1 + εṼ2 + ε2Ṽ3]E

+ε3εch(Ṽ4 + εṼ5)E + c.c.+ · · · , (3.63)

w = εchR
1/16[A(x1)W̃1 + εW̃2 + ε2W̃3]E + εεch(W̃4 + εW̃5)E + c.c.+ · · · , (3.64)

p = ε2hP̃M eiαwx̄ +εεchR
1/16[A(x1)P1 + εP̃2 + ε2P̃3]E

+ε2εch(P4 + εP̃5)E + · · · . (3.65)

Here we have ignored the exponentially small signature of the convecting gust, as
well as the unsteady components which are not in resonance with the T-S wave. The
leading-order T-S wave solution satisfies the linearized boundary-layer equations

iα1Ũ1 + Ṽ1,Y + iβW̃1 = 0, (3.66)

i(α1λ0Y − ω1)Ũ1 + λ0Ṽ1 = −iα1P1 + Ũ1,Y Y , (3.67)

i(α1λ0Y − ω1)W̃1 = −iβP1 + W̃1,Y Y . (3.68)

The above system is subject to the matching condition with the main deck:

Ṽ1,Y → −iα1λ0B1, W̃1 → 0 as Y →∞, (3.69)

and the no-slip condition Ũ1 = Ṽ1 = W̃1 = 0 on the wall (Y = 0); the latter leads to

Ṽ1,Y Y Y (0) = (α2
1 + β2)P1 (3.70)

after setting Y = 0 in (3.67)–(3.68) and using (3.66).
By eliminating the pressure from (3.66)–(3.68), it can be shown that Ṽ1,Y Y satisfies{

∂2

∂Y 2
− i(α1λ0Y − ω1)

}
Ṽ1,Y Y = 0, (3.71)

which has the solution

Ṽ1,Y =

∫ η

η0

Ai(η)dη, (3.72)

where Ai denotes the Airy function, and

η = (iα1λ0)
1/3Y + η0, η0 = −iω1(iα1λ0)

−2/3. (3.73)

Application of (3.69) and (3.70) together with (3.73) gives∫ ∞
η0

Ai(η)dη = −iα1λ0B1, (iα1λ0)
2/3Ai′(η0) = (α2

1 + β2)P1, (3.74)

which with (3.42) leads to the dispersion relation (Lin 1946; Smith 1979a)

∆(λ0) ≡ iα1

∫ ∞
η0

Ai(η)dη − λ0[α
2
1 + β2]−1/2(iα1λ0)

2/3Ai′(η0) = 0. (3.75)

We are only interested in the neutral modes, for which the wavenumbers α1 and β,
and frequency ω1 are all real, and are determined by

α1 = λ
5/4
0 αN, β = λ

5/4
0 βN, ω1 = λ

3/2
0 ωN,

with αN , βN and ωN being given by

α
1/3
N = d1

(
α2
N + β2

N

)−1/2
, ωN = d2α

2/3
N ,

where d1 ≈ 1.009 and d2 ≈ 2.29; for details see Smith (1979a).
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For later reference, we give the solution of the leading-order spanwise velocity

W̃1 =
iβAi′(η0)

α2
1 + β2

 L(η), (3.76)

where  L(η) is the solution to the equation

 L′′ − η  L = 1 (3.77)

subject to the boundary condition  L(η0) = 0 and  L(∞) = 0. It follows from (3.66),
(3.72) and (3.76) that the leading-order streamwise velocity of the T-S wave

Ũ1 = −(iα1)
−1U

(1)
TS with U

(1)
TS =

∫ η

η0

Ai(η)dη − β2

γ2
1

Ai′(η0) L(η). (3.78)

Consider now the terms Ũ2, Ṽ2 and W̃2 in the expansion (3.62)–(3.65). They are
governed by

iα1Ũ2 + Ṽ2,Y + iβW̃2 = −iα2AŨ1, (3.79)

i(α1λ0Y − ω1)Ũ2 + λ0Ṽ2 = −iα1P̃2 + Ũ2,Y Y − i(α2λ0Y − ω2)AŨ1 (3.80)

i(α1λ0Y − ω1)W̃2 = −iβP̃2 + W̃2,Y Y − i(α2λ0Y − ω2)AW̃1, (3.81)

which can be combined to give{
∂2

∂Y 2
− i(α1λ0Y − ω1)

}
Ṽ2,Y Y = i(α2λ0Y − ω2)AṼ1,Y Y . (3.82)

Equations (3.79) and (3.80) can be used to show that the boundary conditions on the
wall, Ũ2 = Ṽ2 = W̃2 = 0 at Y = 0, are equivalent to

Ṽ2,Y = 0, Ṽ2,Y Y Y = (α2
1 + β2)P̃2 + 2α1α2AP1 at Y = 0. (3.83)

The solution satisfying the first of the above conditions is found to be

Ṽ2,Y =

(
ω2

ω1

− α2

α1

)
η0 (Ai(η)−Ai(η0))A+

1

3

α2

α1

(ηAi(η)− η0Ai(η0))A+ q2

∫ η

η0

Ai(η) dη,

(3.84)

where q2 is a function of x1, the determination of which is the key task in developing
the second-order asymptotic theory of receptivity (see below). Application of the
second condition in (3.83) gives

(iα1λ0)
2/3

{(
ω2

ω1

− 2

3

α2

α1

)
η2

0Ai(η0) +
2

3

α2

α1

Ai′(η0)

}
A+ (iα1λ0)

2/3q2Ai′(η0)

= (α2
1 + β2)P̃2 + 2α1α2AP1. (3.85)

Matching Ṽ2,Y with its counterpart in the main deck yields

−A
(
ω2

ω1

− 2

3

α2

α1

)
η0Ai(η0) + q2

∫ ∞
η0

Ai(η) dη = −iα1λ0B2 + iγ2
1α
−1
1 λ0AP1J0. (3.86)

After eliminating B2, P2 and P̄2 from (3.54)–(3.56) and (3.85)–(3.86) and using (3.75),
we arrive at the relation (cf. Smith 1979a)

∆1(λ0) ≡ aα2

α1

+ η0Ai(η0)

(
λ0ω1

α1γ1

− 1

)
ω2

ω1

+iλ0α
−2
1 (iα1λ0)

2/3

{
α1(J∞ − J0 − I2) +

2ω1

γ1

}
Ai′(η0) = 0, (3.87)
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that determines α2 and ω2, where

a(λ0) = 2
3
η0Ai(η0) +

2α2
1 + β2

γ2
1

∫ ∞
η0

Ai(η)dη +
2

3

(iα1λ0)
5/3

α2
1γ1

{
Ai′(η0)− η2

0Ai(η0)
}
. (3.88)

In terms of η, the spanwise momentum equation (3.81) can be written as

[W̃2,ηη − ηW̃2] = iβ(iα1λ0)
−2/3P̃2 + A

{
α2

α1

η + η0

(
ω2

ω1

− α2

α1

)}
iβγ−2

1 Ai′(η0)L(η).

(3.89)

The solution may be expressed in the form

W̃2 = Q0Ai(η) + Q1  L(η) + Q2  L′(η) + Q3η  L′(η). (3.90)

Substitution of (3.90) into (3.89) shows that the constants Q1, Q2 and Q3 take the
following values respectively:

Q1 = (iα1λ0)
−2/3iβP̃2 − 2

3

α2

α1

iβAi′(η0)

α2
1 + β2

A,

Q2 =

(
ω2

ω1

− α2

α1

)
η0

iβAi′(η0)

α2
1 + β2

A, Q3 =
1

3

α2

α1

iβAi′(η0)

α2
1 + β2

A.

The boundary condition W̃2 = 0 at Y = 0 fixes Q0:

Q0 =
1

Ai2

∫ ∞
η0

Ai(η) dη

(
ω2

ω1

− 2

3

α2

α1

)
iβη0Ai′(η0)

α2
1 + β2

A.

The streamwise velocity Ũ2, which will be needed to define the coupling coefficient,
can be calculated by using the continuity equation

Ũ2 = −(iα1)
−1
{
Ṽ2,Y + iβW̃2 + iα2Ũ1

}
. (3.91)

The terms Ũ4, Ṽ4 etc, in (3.62)–(3.65) arise as the direct response to the forcing
from the upper and edge layers. They are governed by the equations

iα1Ũ4 + Ṽ4,Y + iβW̃4 = −A′(x1)Ũ1, (3.92)

i(α1λ0Y − ω1)Ũ4 + λ0Ṽ4 = −iα1P4 + Ũ4,Y Y −Λ(x1)Y Ũ1− λ1x1Ṽ1−A′(x1)p̂1, (3.93)

i(α1λ0Y − ω1)W̃4 = −iβP4 + W̃4,Y Y − Λ(x1)Y W̃1, (3.94)

where Λ is defined by

Λ(x1) = λ0A
′(x1) + iα1λ1x1A. (3.95)

The solution is subject to the no-slip condition on the wall and the matching require-
ment with the main-deck solution, namely

Ũ4 = Ṽ4 = W̃4 = 0 at Y = 0; Ũ4 → λ0B4 + λ1x1AB1, W̃4 → 0 as Y →∞.
Here the matching condition is derived by expanding the small-y asymptote of the
main-deck solution (3.37) about x0. The above boundary conditions imply that

Ṽ4,Y → −iα1λ0B4 − Λ(x1)B1 as Y →∞, (3.96)
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Ṽ4,Y Y Y = (α2
1 + β2)P4 − 2iα1A

′P1 at Y = 0. (3.97)

Now eliminating the pressure from (3.92)–(3.94), we can show that Ṽ4,Y Y satisfies{
∂2

∂Y 2
− i(α1λ0Y − ω1)

}
Ṽ4,Y Y = Λ(x1)Y Ṽ1,Y Y = Λ(x1)(η − η0)Ai(η). (3.98)

In order for equation (3.98) to have a solution which also satisfies the boundary
conditions (3.96) and (3.97), a solvability condition must be satisfied. This condition
follows from applying the boundary and matching conditions to the general solution
of (3.98). The latter is found to be

Ṽ4,Y = 1
3
(iα1λ0)

−1Λ(x1){(η − 3η0)Ai(η) + 2η0Ai(η0)}+ q4

∫ η

η0

Ai(η) dη, (3.99)

where q4 is an unknown function of x1. The boundary conditions (3.96)–(3.97) lead
to

2
3
(iα1λ0)

−1Λη0Ai(η0) + q4

∫ ∞
η0

Ai(η) dη = −iα1λ0B4 − ΛB1, (3.100)

2
3
(iα1λ0)

−1/3Λ
{

Ai′(η0)− η2
0Ai(η0)

}
+ (iα1λ0)

2/3q4Ai′(η0) = (α2
1+β2)P4 − 2iα1A

′P1.

(3.101)

Eliminating B4 and P4 from (3.57), (3.100)–(3.101), and using (3.74)–(3.75), we obtain

A′(x1) = σx1A+N eiαdx1 (3.102)

where

σ = −iα1λ1b/(aλ0), N = λ0Fv/a, (3.103)

with a and Fv being given by (3.88) and (3.59), and

b = 2
3
η0Ai(η0)−

∫ ∞
η0

Ai(η)dη +
2

3

(iα1λ0)
5/3

α2
1γ1

{Ai′(η0)− η2
0Ai(η0)}.

As has been indicated earlier, there are two factors that make a contribution of
O(R−1/8) to the receptivity: the O(R−1/8) forcing term and the O(R−1/8) correction
to the T-S wave solution. The key task in including these higher-order effects is to
determine the unknown function q2(x1); see (3.84). To this end, we must consider
the terms with the subscript ‘5’ in the expansion. One can readily write down the
governing equations for Ũ5, Ṽ5 and W̃5, from which it follows that Ṽ5 satisfies{

∂2

∂Y 2
− i(α1λ0Y − ω1)

}
Ṽ5,Y Y = Y

(
λ0

∂

∂x1

+ iα1λ1x1

)
Ṽ2,Y Y + iα2λ1x1AY Ṽ1,Y Y

+i(α2λ0Y − ω2)Ṽ4,Y Y . (3.104)

Inserting (3.84) and (3.99) into (3.104) and solving the resulting equation, we find

Ṽ5,Y = G̃V (η) + q5

∫ η

η0

Ai(η)dη, (3.105)
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where q5 is an unknown function of x1, and

G̃V = (iα1λ0)
−1Λ

{
1

9

α2

α1

∫ η

η0

[η3Ai(η)− 2Ai(η)] dη

+
1

3

(
ω2

ω1

− 2α2

α1

)
η0

∫ η

η0

[η2Ai(η)−Ai′(η)] dη −
(
ω2

ω1

− α2

α1

)
η2

0

(
Ai′(η)−Ai′(η0)

)}

+q4

{
1

3

α2

α1

(ηAi(η)− η0Ai(η0)) +

(
ω2

ω1

− α2

α1

)
η0(Ai(η)−Ai(η0))

}
+ 1

3
(iα1λ0)

−1Λ1 {(η − 3η0)Ai(η) + 2η0Ai(η0)} , (3.106)

with

Λ1 = λ0q
′
2 + iα1λ1x1q2 + iα2λ1x1A.

The boundary condition at Y = 0 leads to

−(iα1λ0)
−1/3Λ

{
2

9

α2

α1

(η3
0Ai′(η0)+Ai′(η0))+

2

3

(
ω2

ω1

− α2

α1

)
η2

0(η0Ai′(η0)+Ai(η0))

}
+q4

{(
ω2

ω1

− 2

3

α2

α1

)
η2

0Ai(η0) +
2

3

α2

α1

Ai′(η0)

}
(iα1λ0)

2/3

+ 2
3
(iα1λ0)

−1/3Λ1

(
Ai′(η0)− η2

0Ai(η0)
)

+ (iα1λ0)
2/3q5Ai′(η0)

= (α2
1 + β2)P̃5 + 2α1α2P4 − 2iα1P̃2,x1

− 2iα2A
′(x1)P1. (3.107)

On the other hand, matching Ṽ5,Y with its counterpart in the main deck, we find

−iα1λ1x1B2 − iα1λ0B5 +

[
iγ2

1α
−1
1 P4 +

(
1− β2

α2
1

)
A′P1

]
λ0J0

= (iα1λ0)
−1Λ

{
1

9

α2

α1

(−η2
0Ai′(η0) + 2η0Ai(η0)) +

2

3

(
ω2

ω1

− 2α2

α1

)
η0Ai(η0)

+
1

3

(
2ω2

ω1

− α2

α1

)
η2

0Ai′(η0)

}
−q4

(
ω2

ω1

− 2

3

α2

α1

)
η0Ai(η0) + 2

3
(iα1λ)

−1Λ1η0Ai(η0) + q5

∫ ∞
η0

Ai(η) dη. (3.108)

After eliminating P̄5, P̃5 and B5 among (3.55), (3.58), and (3.107)–(3.108), and making
use of (3.75) and (3.100)–(3.101), we arrive at the key equation that determines q2(x1),
namely

aq′2 + b(iα1λ1/λ0)x1q2 = r0Λ+ r1λ0A
′ + r2(iα1λ1x1)A+ λ0Fc, (3.109)

where Fc is given by (3.60), and the constants r0, r1 and r2 are given by (B 1)–(B 3) in
Appendix B. After substituting in (3.102), equation (3.109) can be written as

q′2 = σx1q2 + σ1x1A+ τN eiαdx1 (3.110)

with

σ1 = [(iα1λ1)(r0 + r2) + λ0(r0 + r1)σ]/a, τ = λ0(r0 + r1)/a+ Fc/Fv. (3.111)

The amplitude equations (3.102) and (3.110) form the basis for the calculation of the
initial amplitude of the T-S wave and the coupling coefficient.
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3.5. Downstream development and the coupling coefficient

We now show how the amplitude equations (3.102) and (3.110) can be used to obtain
the initial amplitude of the T-S wave and the coupling coefficient. The appropriate
solution to (3.102) is (cf. Wu 1999)

A(x1) = N exp
(

1
2
σx2

1

) ∫ x1

−∞
exp

(− 1
2
σξ2 + iαdξ

)
dξ, (3.112)

and has the property that as x1 → −∞,

A(x1)→ (N eiαdx1 /σ)(−x1)
−1 + O(x1)

−2.

As was shown in Wu (1999), the above behaviour of A(x1) in fact matches with the
leading-order forced response upstream; see also Appendix C. On the other hand, as
x1 →∞

A(x1)→ A∞ exp
(

1
2
σx2

1

)
, with A∞ = N

∫ ∞
−∞

exp
(− 1

2
σξ2 + iαdξ

)
dξ. (3.113)

On inserting (3.112) into (3.110), it can be shown that

q2 = N

{
σ1

∫ x1

−∞
η

∫ η

−∞
exp

(− 1
2
σξ2 + iαdξ

)
dξdη

+τ

∫ x1

−∞
exp

(− 1
2
σξ2 + iαdξ

)
dξ

}
exp

(
1
2
σx2

1

)
, (3.114)

from which it follows that as x1 → −∞,

q2 →
{
λ0(r0 + r2)

b
(N/σ)− λ2

0Fc

iα1λ1b

}
(−x1)

−1 eiαdx1 , (3.115)

where use has been made of (3.111) and (3.103). It is shown in Appendix C that q2

matches to the upstream forced response at the second order.
In the downstream limit, x1 →∞,

q2 → ( 1
2
σ1x

2
1 + q∞)A∞ exp ( 1

2
σx2

1) (3.116)

where

q∞ = − σ1

2σ

(
1− α2

d

σ

)
+ τ. (3.117)

As is indicated by (3.62), the streamwise velocity of the TS wave, up to O(R−1/8)
accuracy, is given by

uTS = εchR
1/16(A(x1)Ũ1 + εŨ2)E, (3.118)

and after substituting in (3.78), (3.84)–(3.85), (3.90)–(3.91), and making use of (3.113)
and (3.116), we obtain that as x1 →∞,

uTS → εchR
1/16(−iα1)

−1A∞
{
U

(2)
TS + 1

2
εσ1x

2
1U

(1)
TS

}
exp ( 1

2
σx2

1)E (3.119)

where U(1)
TS and U(2)

TS are given by (3.78) and (B 4) respectively.
As x1 = O(R3/16), the T-S wave eventually acquires an O(1) growth rate, and evolves

over the fast streamwise scale x̄. The direct external forcing becomes unimportant,
with the result that the T-S wave is described by the free-evolution theory, i.e. the
local parallel stability theory. The T-S wave solution, its streamwise velocity in the
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lower deck say, takes the usual WKBJ form

uTS = AIUTS (Y , x; ε) exp

{
iR3/8

∫ x

x0

αTS (x) dx− iωt̄

}
(3.120)

where the constant AI represents the (unknown) amplitude of the T-S wave. The
complex wavenumber αTS (x) has the expansion

αTS = α1(x) + εα2(x) + · · ·
with α1, α2 etc. being determined by an eigenvalue problem, in which the dependence
on the slow variable x is parametric. As x − x0 = O(R−3/16), α1 and α2 can be
approximated by their Taylor series; using this in (3.120) we find that

uTS ≈ AIUTS (Y , x0; ε) exp { 1
2
α′1(x0)x

2
1 + 1

2
εα′2(x0)x

2
1}E

≈ AIUTS (Y , x0; ε)
(
1 + 1

2
εα′2(x0)x

2
1

)
e

1
2 α
′
1(x0)x2

1 E. (3.121)

Matching the leading terms in (3.119) and (3.121) gives

uI ≡ AIUTS (Y , x0; ε) = εchR
1/16(−iα1)

−1A∞UTS . (3.122)

The terms proportional to x2
1 match automatically since σ = α′1(x0) and σ1 = α′2(x0).

In receptivity experiments, one usually has to measure the streamwise velocity of
the T-S wave at some distance downstream of the neutral curve. That velocity is then
extrapolated back to give the velocity at the lower-branch neutral point, which is
then used to define the receptivity coefficient. In our theory, the uI given by (3.122)
represents exactly this extrapolated velocity. It is worth noting that although uI is
often referred to as the streamwise velocity of the T-S wave at the neutral point on
the lower branch, it is not the physical velocity measured directly at that point; the
latter corresponds to uTS (as defined by (3.118)) evaluated at x1 = 0, and in fact is, to
leading order, just half uI . Interestingly, it is uI that is needed for the calculation of
the continued development of the T-S wave, as (3.120) shows. The physical velocity
at the neutral point, on the other hand, cannot be ‘fed’ as the initial amplitude even if
it were available. The reason for this is that near the neutral point, the local stability
theory, which unlike (3.102) does not take account of the forcing, is invalid.

To be consistent with the practice in experimental studies, we use the maximum
value of uI as a measure of the T-S wave magnitude. For the vortical disturbance,
the amplitude of the generated T-S wave, in general, is dependent on the vertical
structure of the gust in the free stream. However, a close examination of the forcing
terms, given by (3.59)–(3.60), indicates that such a dependence should be weak. First,
if the vertical variation of a gust occurs on the slow variable ỹ ≡ εȳ, then ū′c(ȳ) = O(ε)
and R̄p = O(ε), implying that the receptivity to leading order depends only on the
slip velocity of the gust ūc(0), unaffected by the detailed distribution of the gust. A
typical case is the one that corresponds to the two-dimensional limit of (3.7) with
βv = O(ε), as was considered by Duck et al. (1996). If the gust is further assumed to
be ‘compact’ in the vertical direction and centred at a large distance from the wall,
at ȳc � 1 say, such that ūc and w̄c are nearly uniform away from ȳc, then we may
neglect ū′c(0) and w̄′c(0) as well as their higher-order derivatives. The convecting wake
in Dietz’s (1999) experiments apparently falls into this category. Then by performing
repeated integration by parts on the integral on the right-hand side of (3.61), it can
be shown that the integral is smaller than ε to any power. Thus we have∫ ∞

0

R̄p(ȳ) e−γ1ȳ dȳ ≈ 2εiαw
αw + γ1

[2αcūc(0) + βw̄c(0)]v̄M(0). (3.123)
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An alternative argument to justify the above approximation goes as follows. Since
the integrand in (3.61) involves ū′c and w̄′c, the dominant contribution to the integral
would come from the region surrounding ȳc. But that contribution should be small
because of the factor exp (−(αw + γ1)ȳ) in the integrand. This intuitive consideration
may be formalized mathematically by assuming that ū′c = Φ(ȳ − ȳc) with Φ being
majorized by M exp (−s|ȳ − ȳc|) say, that is |Φ(ȳ − ȳc)| 6 M exp (−s|ȳ − ȳc|), where
M and s are positive constants. It follows that∣∣∣∣∫ ∞

0

ū′c(ȳ) e−(αw+γ1)ȳ dȳ

∣∣∣∣ 6 2s e−(α1+γ1)ȳc − e−sȳc

s2 − (αw + γ1)2
M;

the integral is exponentially small if ȳc � 1 and hence can be neglected. Similar
estimates can be made of the integrals involving w̄′c and yR̄p.

For a ‘compact’ two-dimensional vortical disturbance, the forcing term is pro-
portional to ūc(0), i.e. A∞ = ūc(0)A(2)∞ . We may define the coupling coefficient CV
as

CV ≡ max |uI |/εcūc(0) = R1/16hA(2)
∞ max

η
|UTS | = R−5/16RhA

(2)
∞ α
−1
1 max

η
|UTS |,

(3.124)

where Rh = U∞h∗/ν is the roughness Reynolds number based on the dimensional
roughness height h∗.

For a ‘compact’ three-dimensional vortical disturbance, we find that to O(ε) accu-
racy, A∞ = {ūc(0) + εβw̄c(0)/(αw + γ1)}A(3)∞ . The coupling coefficient CV can be defined
as

C
(3)
V ≡ max |uI |

εc[ūc(0) + εβw̄c(0)/(αw + γ1)]
= R−5/16RhA

(3)
∞ α
−1
1 max

η
|UTS |. (3.125)

4. Receptivity to acoustic disturbance
4.1. The upper deck

For the acoustic disturbance, the leading-order interaction that leads to the generation
of T-S waves takes place in the lower deck. But the sound and the mean-flow distortion
also interact in the main and upper decks, making an O(R−1/8) contribution to the
receptivity. In the upper deck, the expansion for the velocity and pressure takes the
form

u = 1 + ε2hūM eiαwx̄ +εsu∞ e−iωt̄ +εshR
1/16(ū1 + εū2 + ε2ū3)E

+εεsh(ū4 + εū5)E + c.c.+ · · · ,
v = ε2hv̄M eiαwx̄ +εshR

1/16(v̄1 + εv̄2 + ε2v̄3)E + εεsh(v̄4 + εv̄5)E + c.c.+ · · · ,
p = ε2hp̄M eiαwx̄ +εεsiωu∞x̄ e−iωt̄ +εshR

1/16(p̄1 + εp̄2 + ε2p̄3)E

+εεsh(p̄4 + εp̄5)E + c.c.+ · · · ,
where the solution for the mean-flow distortion (ūM, v̄M, p̄M) is given by (2.20). In the
present incompressible (i.e. small Mach number) limit, the sound wave is represented
by an O(εs) uniform pulsation in the streamwise velocity, driven by a uniform
pressure gradient. The forcing term due to the sound–roughness interaction has the
wavenumber αw , and we shall allow αw to differ from the T-S wavenumber α by
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O(R−3/16); so the detuning parameter

αd ≈ R3/16[αw − (α1 + εα2 + ε2α3)]. (4.1)

The quantities with subscripts ‘1’, ‘2’ and ‘3’ in the expansion represent the T-S wave
and the higher-order corrections. The solutions for them are the two-dimensional
version of those in the previous section, and will not be repeated here. But it is
worth noting that the magnitude of the T-S wave generated by the sound–roughness
interaction is a factor R1/8 larger than that generated by the vorticity–roughness
interaction. The solutions for p̄4 and v̄4 are the same as (3.20) and (3.22) provided
that β and the forcing terms in these equations are set to zero, that is

p̄4 =
(
P4 + iA′P1ȳ

)
e−α1ȳ , v̄4 = −i[P4 + iA′P1ȳ] e−α1ȳ . (4.2)

The pressure p̄5 satisfies the two-dimensional version of (3.25), i.e.

p̄5,ȳȳ − α2
1p̄5 = 2α1α2p̄4 − 2iα1p̄2,x1

− 2iα2p̄1,x1
, (4.3)

and has the solution

p̄5 = {P̄5 − iα2A
′P1ȳ

2 + (iP̄2,x1
− α2P4)ȳ} e−γ1ȳ . (4.4)

The expansion of the vertical momentum equation yields

iα1v̄5 + i(α2 − ω1)v̄4 + v̄2,x1
= −p̄5,ȳ − iαwu∞v̄(1)

M eiαdx1 ,

and we find that

v̄5 → −iP̄5 − i
ω1

α1

P4 +
ω1

α2
1

A′P1 − αw

α1

u∞v̄(1)
M (0) eiαdx1 as ȳ → 0. (4.5)

4.2. The main-deck solution

The solution in the main deck expands as

u = UB + εhUM + εsu∞ e−iωt̄ +εshR
3/16[AU1 + εU2 + ε2U3]E

+εsh(U4 + εU5)E + c.c.+ · · · , (4.6)

v = ε2hVM + εshR
1/16[AV1 + εV2 + ε2V3]E + εεsh(V4 + εV5)E + c.c.+ · · · , (4.7)

p = ε2hPM + εεsiωu∞x̄ e−iωt̄ +εshR
1/16[AP1 + εP2 + ε2P3]E

+εεsh(P4 + εP5)E + c.c.+ · · · . (4.8)

The mean-flow distortion (UM,VM, PM) is given by (2.12). The solutions for U4 and
V4 are the same as given by (3.51), and the matching condition with the upper-deck
solution gives

−iα1B4 − A′B1 = −iP4. (4.9)

The governing equations for V5 and P5 are

UBV5,y −U ′BV5 = A′P1 + iα1P4 − iω1U4 + iαwu∞U(1)
M eiαdx1 ,

UB(iα1V4 + A′V1) + iαwu∞V (1)
M eiαdx1 = −P5,y .

We find that

V5 = −iα1B5UB + iω1B4 + (A′P1 + iα1P4)UB

∫ y dy

U2
B

− iαwu∞A(1)
M eiαdx1 , (4.10)
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P5 = P̃5 − (α2
1B4 − 2iα1A

′B1)

∫ y

0

U2
B dy −

{
α2
wu∞A

(1)
M

∫ y

0

UB dy

}
eiαdx1 . (4.11)

The matching of the pressure and vertical velocity in the main and upper layers
requires

P̄5 = P̃5 − (α2
1B4 − 2iα1A

′B1)I2 − 1
2
α2

1AB1I2x1 − α2
wu∞A

(1)
M I1 eiαdx1 , (4.12)

−iα1B5 + iω1B4 + (A′P1 + iα1P4)J∞ + 1
2
iα1AP1J∞x1

= −iP̄5 − i
ω1

α1

P4 +
ω1

α2
1

A′P1 + iαw

(
1 +

αw

α1

)
u∞A(1)

M eiαdx1 (4.13)

where I1 is given by (A 2).

4.3. The lower-deck solution

For the acoustic disturbance, the lower deck is the most active region in that the sound-
roughness interaction there makes the leading-order contribution to the receptivity.
The expansion takes the form

u = ε(λ0 + R−3/16λ1x1)Y + εhŨM eiαwx̄ +εsŨs e−iωt̄

+εshR
3/16[A(x1)Ũ1 + εŨ2 + ε2Ũ3]E + εsh(Ũ4 + εŨ5)E + · · · , (4.14)

v = ε3hṼM eiαwx̄ +εεshR
1/16[A(x1)Ṽ1 + εṼ2 + ε2Ṽ3]E+ ε2εsh(Ṽ4 + εṼ5)E+ · · · , (4.15)

p = ε2hP̃M eiαwx̄ +εεsωu∞x̄ e−iωt̄ +εεshR
3/16[A(x1)P1 + εP̃2 + ε2P̃3]E

+εεsh(P4 + εP̃5)E + · · · . (4.16)

Here (ŨM, ṼM, P̃M) stands for the solution for the mean-flow distortion as given
by (2.24). The O(εs) term is the oscillatory flow driven by the unsteady pressure
fluctuation

Ũs = u∞{1− exp (i3/2ω1/2Y )}. (4.17)

Consider the flow directly forced by the sound–roughness interaction. It is governed
by equations

iα1Ũ4 + Ṽ4,Y = −A′(x1)Ũ1, (4.18)

i(α1λ0Y − ω1)Ũ4 + λ0Ṽ4 = −iα1P4 + Ũ4,Y Y − Λ(x1)Y Ũ1 − λ1x1Ṽ1 − A′(x1)P1

−(iαwŨsŨM + ṼMŨs,Y ) eiαdx1 . (4.19)

Recall that ŨM and ṼM consist of the O(ε) correction so that the direct forcing term
of O(ε) has already been included; this is more convenient than relegating it to the
next order. Now under the assumption that h � O(1), the boundary conditions on
the wall Y = hFw(eiαwx̄ +c.c.) can be replaced by those at Y = 0, namely

Ũ4(0) = i3/2ω1/2Fw, Ṽ4(0) = 0. (4.20)

As usual, eliminating P4 between (4.18)–(4.19) leads to{
∂2

∂Y 2
− i(α1λ0Y − ω1)

}
Ṽ4,Y Y = Λ(x1)Y Ṽ1,Y Y − iα1(iαwŨsŨM,Y + ṼMŨs,Y Y ) eiαdx1 ,

(4.21)
with Λ being given by (3.95). It is convenient to write

Ṽ4,Y = 1
3
(iα1λ0)

−1Λ(x1){(η − 3η0)Ai(η) + 2η0Ai(η0)}+ V̂4,Y . (4.22)
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Then in terms of η, the governing equation for V̂4,ηη becomes(
∂2

∂η2
− η
)
V̂4,ηη = −λ−1

0 (iα1λ0)
−1/3(iαwŨsŨM,Y + ṼMŨs,Y Y ) eiαdx1 ≡ G(η) eiαdx1 . (4.23)

The matching condition with the main-deck solution is

V̂4,Y + 2
3
(iα1λ0)

−1Λη0Ai(η0)→ −iα1λ0B4 − ΛB1 as Y →∞. (4.24)

The boundary conditions (4.20) together with (4.18)–(4.19) imply that

V̂4,Y (0) = i1/2ω1/2α1Fw, (4.25)

V̂4,Y Y Y (0) + 2
3
(iα1λ0)

−1/3Λ(Ai′(η0)− η2
0Ai(η0))

= α2
1P4 − 2iα1A

′P1 − i3/2ω1/2ω1α1Fw. (4.26)

The amplitude equation for A(x1) can be derived by considering the solvability
condition of (4.23)–(4.26). To this end, we multiply both sides of (4.23) by (Ai(η) +
κL(η)) and integrate by parts (Smith 1979b), where

κ = −Ai′(η0)/ L′(η0) = Ai(η0)Ai′(η0)/

∫ ∞
η0

Ai(η) dη.

After making use of (4.24)–(4.26), we obtain

A′ = σx1A+N eiαdx1 (4.27)

where σ is given in (3.103), and

N = − iλ2
0

aAi(η0)

∫ ∞
η0

G(η){Ai(η) + κ L(η)} dη − i3/2ω1/2

a
(α2

1 − λ0ω1)Fw. (4.28)

In terms of the Airy function, the solution for V̂4,ηη can be expressed as

V̂4,ηη = Ai(η)

∫ η

η0

dq

Ai2(q)

∫ q

∞
Ai(q1)G(q1) dq1, (4.29)

which is integrated to give

V̂4,η(∞) =

∫ ∞
η0

Ai(η)

∫ η

η0

dq

Ai2(q)

∫ q

∞
Ai(q1)G(q1) dq1 dη + (iα1λ0)

−1/3i1/2ω1/2α1Fw.

(4.30)

The O(R−1/8) correction to the receptivity can be obtained by considering Ṽ5. Much
of the algebra is similar to that for the vortical disturbance. To take the advantage
of this similarity, we write

Ṽ5,Y = G̃V + V̂5,Y ,

with G̃V being defined by (3.106). It follows that V̂5 satisfies(
∂2

∂η2
− η
)
V̂5,ηη =

{
H(η) +

α2

α1

G(η)

}
eiαdx1 , (4.31)

where

H(η) =

{
α2

α1

η +

(
ω2

ω1

− α2

α1

)
η0

}
V̂4,ηη. (4.32)
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It can be shown that the boundary conditions are

V̂5,Y (0) = i1/2ω1/2α2Fw, (4.33)

V̂5,Y Y Y (0) + G̃V ,Y Y (0) = α2
1P̃5 + 2α1α2P4 − 2iα1P̃2,x1

− 2iα2A
′(x1)P1

−i1/2(α1ω2 + α2ω1)ω
1/2Fw, (4.34)

V̂5,Y + G̃V → α1B2λ1x1 − iα1λ0B5 + (α1P4 + A′P1)λ0J0 as Y →∞. (4.35)

Multiplying both sides of (4.31) by (Ai(η) + κ L(η)), integrating from η0 to ∞ with
respect to η and substituting (4.33)–(4.35), (4.24)–(4.26) into the resulting relation, we
obtain

q′2 = σx1q2 + σ1x1A+ τN eiαdx1 (4.36)

where the constants σ and σ1 are defined by (3.103) and (3.111) respectively, and

τ = λ0(r0 + r1)/a+Nc/N

with r0 and r1 being given by the two-dimension version of (B 1)–(B 2) and

Nc = − iλ2
0

aAi(η0)

∫ ∞
η0

{
H(η) +

α2

α1

G(η)

}
(Ai(η) + κ L(η)) dη

− i3/2ω1/2

a
[α1α2 − λ0α

−1
1 (α1ω2 + α2ω1)]Fw − λ0α1αw

a

(
αwI1 + 1 +

αw

α1

)
A

(1)
M

−λ0

a

{
2α2 − ω1

α1

− α1(J∞ − J0)

}{
− iλ0

Ai(η0)

∫ ∞
η0

Ai(η)G(η)dη + i3/2ω1/2ω1Fw

}
− iα1

a

(
α1I2 − ω1

α1

)
(iα1λ0)

1/3V̂4,η(∞). (4.37)

We have derived the required amplitude equations (4.27) and (4.36) for the acoustic
receptivity, with all the coefficients being given in closed forms. By a similar argument
as in § 3.5, the streamwise velocity of the T-S wave at the lower-branch neutral point
is found to be

uI = εshR
3/16(−iα1)

−1A∞UTS .

Since the forcing term is proportional to u∞, i.e. A∞ = u∞A(a)∞ , we define the coupling
coefficient CA for the acoustic receptivity as

CA ≡ max |uI |/εsu∞ = R3/16hA(a)
∞ max

η
|UTS | = R−3/16Rhα

−1
1 A(a)

∞ max
η
|UTS |. (4.38)

5. Numerical results and comparison with experiments
We now calculate the initial amplitude of the T-S wave and the coupling coefficient

for each of the two receptivity mechanisms. The Blasius profile, and the functions
Ai(η) and  L(η) in (3.77) are obtained by a shooting method based on a fourth-order
Runge–Kutta method. The various integrals are evaluated using the Trapesiodal rule
or Simpson’s rule wherever possible.

The higher-order corrections to the neutral frequency and wavenumber are pre-
sented in figure 2(a, b), which shows ω2 and ω3, and α2 and α3 as functions of the
scaled spanwise wavenumber β. It is found that in the large-β limit,

ω2 ∼ 0.618β−1, ω3 ∼ 3.270; α2 ∼ 0.134β−2, α3 ∼ 1.439β−1. (5.1)
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Figure 2. Neutral modes of T-S waves: (a) variations of ω2 and ω3 with β, and (b) variations of
α2 and α3 with β. The dotted lines represent the large-β asymptotes (5.1).

This implies that the expansions (3.3)–(3.4) cease to be valid when β = O(R1/8), but
the pursuit of this limit is beyond the interest of the present paper.

To facilitate the comparison with experiments, we normalized the dimensional
frequency of the T-S wave, ω∗, as

F = ω∗ν/U2
∞ × 106.

In terms of F , equation (3.4) can be written as

F = R−3/4(ω1 + εω2 + ε2ω3 + · · ·)× 106, (5.2)

which is the asymptotic approximation to the lower-branch neutral curve. As it
stands, this relation is often viewed as approximating the frequency of the neutral
T-S wave for a given (but large) Reynolds number. An alternative (and more useful)
interpretation is that it determines the neutral Reynolds number (i.e. neutral point
x0) for a given frequency F . The latter viewpoint will be adopted in performing the
comparison with experiments. This means that the input data are taken to be the
frequency F while R takes the value that satisfies (5.2). It is well known that the R
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predicted in this way is rather poor. This inaccuracy will of course have an adverse
effect on the prediction of receptivity, but the scaling relations (3.124) and (4.38)
suggest that the magnitude of the T-S wave should not be sensitive to the error in R.

Before we present the quantitative results, it is worth noting that (3.124) and (4.38)
together with (5.2) show that for roughness of fixed height, the vortical and acoustic
coupling coefficients CV and CA scale with the frequency F as follows:

CV ∼ F1/4, CA ∼ F5/12. (5.3)

These imply that for both gust–roughness and sound–roughness interactions, higher
frequency components of the free-stream disturbance are more effective in generating
T-S waves. This is in contrast to the receptivity mechanism due to the sound–
gust interaction where the lower-frequency components are more efficient since the
coupling coefficient there is proportional to F−1/2 (Wu 1999).

5.1. Vortical receptivity

In the experiments on distributed receptivity, the wall roughness is modelled by
strips of polyester tape, which are equally spaced near the lower branch of the
neutral stability curve. This produces an approximate square-wave, whose first Fourier
component is given by h∗Fw with

Fw =
2

π
sin

d∗

l∗
π,

where h∗ and d∗ denote the thickness and width of the tape respectively, and l∗ is the
separation between the two adjacent strips and is usually taken to be 2d∗ (i.e. l∗ = 2d∗)
so as to maximize Fw . In Dietz’s (1999) experiments, h∗ = 100 µm and d∗ = 25.4 mm.
Measurements were carried out for vortical disturbances with frequency F in the range
35 to 70, with the receptivity being found to be the strongest at F ≈ 50. We calculate
the initial T-S wave amplitude for the experimental condition. In figure 3(a), our
theoretical results are compared with Dietz’s data. We also include the prediction by
the ‘first-order theory’, which is obtained by neglecting the O(ε) term in (B 4). Clearly,
the second-order theory outperforms the first-order theory. The overall agreement
between the second-order theory and experiments is good. In particular the maximum
response is predicted with a remarkable accuracy. However, the optimal frequency
given by our theory is Fc = 47 as opposed to the experimental value Fc = 50. This
discrepancy occurs because, for a given F , the neutral Reynolds number and neutral
wavenumber predicted by (5.2) and (3.3) are not accurate enough, thereby causing
an error in the detuning parameter αd (see (3.9)). This inaccuracy of the theoretical
optimal frequency accounts for the relatively poor pointwise agreement in figure 3(a).
Its effect on the receptivity can be removed by plotting the predicted and measured
amplitudes of the T-S waves against their respective ‘frequency detuning parameter’
σF = (F −Fc)/Fc. As is shown in figure 3(b), an excellent pointwise agreement is then
obtained. The apparent discrepancy at large σF is expected since our perturbation
approach is valid only when the frequency is relatively close to the optimal one. Note
that the present quantitative comparison with experiments is the first to be made for
the distributed receptivity to vortical disturbances. Previously, Dietz (1999) compared
his measurements with the finite-Reynolds-number calculations of Choudhari (1996)
and the asymptotic result of Kerschen (1991), but only for the localized receptivity;
the agreement there was encouraging but somewhat less satisfactory than here.

The above calculations are carried out for a fixed wavelength of the wavy wall,
for which the receptivity is most effective (i.e. αd = 0) when the frequency F ≈ 50.
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Figure 3. (a) Variation of the T-S wave amplitude with the forcing frequency F . (b) Variation of
the T-S wave amplitude with the frequency detuning parameter σF . The solid line represents the
results given by the second-order theory, and the dotted line by the ‘first-order’ theory. The symbols
correspond to the measurement of Dietz (1999).

In order to have a more complete understanding about the effectiveness of the
vortical receptivity, calculations are carried out for different frequencies of the vortical
disturbance, for each of which the wavelength of the wall is varied accordingly so as
to satisfy αd = 0, thereby achieving the maximum receptivity. The effectiveness can be
characterized by the efficiency function defined as

ΛF = CV/(FwRh),

which unlike the coupling coefficient, is independent of the roughness height. The
result is displayed in figure 4, which shows that ΛF increases with the frequency F .

In reality, vortical disturbances are three-dimensional. Unfortunately no controlled
experiments have been undertaken yet. But based on the success of Dietz’s exper-
iments, it might be possible to generate a vortical disturbance in the form of a
three-dimensional convecting wake, for instance by having the vibrating ribbon make
a suitable angle to the oncoming flow, or by attaching tapes along the span of the
ribbon. With such a possibility in mind, calculations are carried out for this form of
disturbance. The variation of efficiency function ΛF = C

(3)
V /(RhFw) with the spanwise
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Figure 4. The variation of the maximum efficiency function ΛF (attained when αd = 0) with the
forcing frequency F . The solid line represents results from the second-order theory and the dotted
line first-order theory. Dietz’s (1999) experimental result is marked by •.
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Figure 5. Effect of the three-dimensionality receptivity: variation of the maximum efficiency
function ΛF with β.

wavenumber β is shown in figure 5, where C (3)
V is defined by (3.125). As is illustrated,

for a fixed F the receptivity becomes more effective as three-dimensionality increases.
It must be pointed out, however, that the results presented here are only for β up to a
rather moderate value because expansions (3.3)–(3.4) become disordered for larger β.
The receptivity to highly oblique disturbances thus requires further investigation. Fig-
ure 5 also shows that as with the two-dimensional case, high-frequency disturbances
are more efficient in generating T-S waves.

We now consider the receptivity to the vortical disturbance that is the superposition
of the form (3.7) with ±βv . This type of vortical disturbance has been much studied
(e.g. Crouch 1994; Duck et al. 1996). In this case, the approximation (3.123) is
invalid, but the bulk contribution represented by the integrals in (3.59)–(3.60) can
be evaluated. Because u∞ cannot be an appropriate characteristic velocity of the
fluctuation when βv is very small, we define the efficiency function as

ΛF = max |uI |/(εc(u2∞)1/2RhFw),
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Figure 6. Receptivity to the vortical disturbance (3.7): variation of the maximum efficiency function

ΛF with the vertical wavenumber βv . The solid line: normalized by (u2∞)1/2, and the dashed line:
normalized by u∞. The results of Crouch (1994) are represented by •; the open circles show our
corresponding results.

where (u2∞)1/2 is the root-mean-square value of the free-stream fluctuation. In figure
6, we plot the efficiency function against βv , the vertical wavenumber of the gust, for
F = 56 and F = 24, with the wavelength of the wall roughness being tuned such
that αd = 0. The receptivity appears to be selective with respect to βv , being strongest
at βv ≈ 0.3. At the large βv-limit, ΛF approaches a constant value, which is about a
third of its peak value. A comparison with figure 4 indicates that this form of gust is
just as effective as the convecting wake. For the purpose of comparing with previous
calculations of Crouch (1994), we also present the efficiency function based on u∞, to
ensure that the same normalization is used. The open circles correspond to βv = εαc,
the case considered by Crouch (1994). But his result, represented here by the two
solid dots, is only 1/7 of ours. A more detailed comparison with Crouch (1994) is
shown in figure 7 for the detuned case (αd 6= 0) for F = 56 and F = 24, taken from
his figure 8. Note that due to different ways of normalization, the αw and AI in his
figure correspond to our 1000R−5/8αw and 1000ΛF respectively.

5.2. Acoustic receptivity

The efficiency function for the acoustic receptivity can be defined as ΛF = CA/(RhFw).
As a check, in figure 8 we compare our results with those of Choudhari (1993). A fair
agreement can be observed. Interestingly and somewhat surprisingly, our first-order
theory agrees better with his results. As we stated in § 1, Choudhari’s calculations
were based on the O-S equations. Unlike for the vortical receptivity, the use of the
O-S equations for the acoustic receptivity appears better justified. Indeed the result
given by this approach may be regarded as a kind of ‘composite’ approximation,
valid up to and including O(R−2/8), that is just before the non-parallelism makes an
O(R−3/8 logR−1/8) correction (Smith 1979a). One may argue that his results might be
more accurate than ours. Because rather different formulations are adopted in the
present and Choudhari’s work, it is not possible to make a detailed correspondence
so as to identify the source of the discrepancy between his result and our second-
order approximation. We note that for the isolated receptivity, Choudhari & Streett
(1992) made a detailed comparison between the results given by asymptotic and
finite-Reynolds-number methods.
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theory: the dotted line. The second-order theory: the solid line.

The complete data for the distributed acoustic receptivity came from the experi-
ments of Wiegel & Wlezien (1993), which were conducted using Choudhari’s (1993)
theoretical results as guidance. Wiegel & Wlezien were the first to simulate the
distributed roughness by arrays of tapes, a technique that was later employed by
Dietz (1999) to study the vortical receptivity. In their experiments, h∗ = 40 µm and
d∗ = 25.4 mm. A loudspeaker produces a sound wave of constant dimensional fre-
quency (80 Hz). The free-stream velocity is adjusted as so to vary the non-dimensional
frequency F . Wiegel & Wlezien mentioned that the temperature was maintained at an
almost constant level, but did not give its value in their paper. Using the data in their
figure 14, we are able to deduce that the kinematic viscosity ν = 1.546× 10−5 m2 s−1,
suggesting that the temperature is about 25 ◦C. We calculate the coupling coefficient
for the above parameters. A comparison with their measurements is made in figure
9. Our first-order approximation shows an excellent agreement with the experiments.
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Figure 9. Variation of the coupling coefficient CA with the wavenumber detuning parameter
σα ≡ (αw − α)/α. The solid line represents the results given by the second-order theory, and the
dotted line by the ‘first-order’ theory. The symbols correspond to the measurement of Wiegel &
Wlezien (1993).

The second-order theory, while exhibiting the same trend, significantly over-predicts.
At this point, one naturally suspects that an error might have occurred in the second-
order theory. This suspicion however was dispelled after the present author had spent
considerable time checking the derivation as well as the numerical calculations. One
may argue that a two-term asymptotic expansion is not necessarily a more accu-
rate approximation than a single-term expansion. Indeed in the case of a regular
asymptotic series, for any given value of the small parameter, there is an optimal
truncation that will provide the best approximation. But for the present problem, the
series is essentially singular (as it will contain terms like εn log ε on proceeding to
higher orders), and it is not clear whether an optimal truncation exists or not. A more
plausible explanation of the discrepancy probably is the one given by Dietz (1999).
He points out that while the initial amplitude is obtained by extrapolation using
the N-factor for the Blasius profile, in experiments a slight pressure gradient may
exist, (to which the N-factor is known to be very sensitive) and thus the true growth
factor may be different. He demonstrates that a small (favourable) pressure gradient
within the experiment uncertainty may result in a 30% discrepancy in the estimate
of receptivity. Of course such an experimental error also reduces the support for the
good agreement shown in the case of the vortical receptivity. To settle this question
completely, further experimental and computational investigations are required.

The variation of the efficiency function with the frequency F for the perfectly
tuned case (αd = 0) is shown in figure 10. The data reflect the overall efficiency
of the acoustic disturbance in generating T-S waves. A comparison with figure 4
indicates that the efficiency function of the vortical receptivity is about 1/6 that of
the acoustic receptivity. For the Reynolds numbers considered, this ratio is consistent
with the asymptotic estimation that the vortical receptivity is weaker than the acoustic
receptivity by a factor O(R−1/8). Previous studies suggested that the ratio was about
1/50 (e.g. Crouch 1994), the implication of which is that vortical disturbances are
a very ineffective T-S wave generator. This is directly at odds with the laboratory
observations that the free-stream turbulence crucially affects the laminar–turbulent
transition process caused by T-S waves. Now we find that the vortical receptivity
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Figure 10. Variation of the maximum efficiency function ΛF (attained when αd = 0) with the
forcing frequency F . Wiegel & Wlezien’s (1993) experimental result is marked by •.

is much stronger than was suggested by previous calculations. Indeed since the 1/6
factor could be offset by relatively strong vortical fluctuations in the free stream, they
may well be a dominant T-S wave generator in practical situations.

Finally, we would like to point out that in the present work, we used linear
solutions for both the mean-flow distortion and the vortical disturbance, with the
result that the T-S wave exhibits a linear dependence on h∗ and εc. This is true of
course only when the roughness is mild and the free-stream disturbance is weak.
In the case of a localized roughness interacting with a sound wave, Zhou, Liu &
Blackwelder (1994) observed that when h∗ becomes large, the amplitude of the T-S
wave is under-predicted by linear theory, implying that the nonlinear effect associated
with the mean-flow distortion enhances the receptivity. The same conclusion was
reached by Dietz (1999) for the localized vortical receptivity. His experiments also
reveal that appreciable deviation from the linear dependence on εc occurs when
the turbulence level exceeds 1%, and more interestingly that further increase in the
intensity of the vortical disturbance tends to weaken the receptivity. Presumably the
above conclusions will also be true for the distributed roughness. The effect of a
nonlinear mean-flow distortion on the distributed receptivity could be assessed by
using the fully nonlinear steady triple-deck solution, as has been done by Bodonyi
et al. (1989) for the localized (acoustic) receptivity. But if the roughness height is
moderate, a sensible alternative would be to extend the present work to take account
of the O(h∗2) correction. Similarly, by extending our analysis to include the O(ε2

c)
correction, it might be possible to provide a first assessment of the effect of a weakly
nonlinear free-stream disturbance on receptivity. If it can be shown that this effect
weakens receptivity, we may begin to understand why T-S waves play a less important
or no role in the transition process when the free-stream turbulence is sufficiently high.

6. Conclusions
In this paper, we have developed a second-order asymptotic theory for the recep-

tivity of a boundary layer over a wavy wall to the free-stream vortical and acoustic
disturbances. It was shown that for distributed roughness, the receptivity actually has
a local character, taking place in the O(R−3/16) vicinity of the neutral point of the
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T-S wave. In this region, the forcing due to the interaction between the unsteady
disturbance and the mean-flow distortion is in resonance with the T-S wave, with the
result that the latter develops from the small-amplitude response upstream.

The high-Reynolds-number approach adopted in the present work allowed us to
calculate the amplitudes of the excited T-S waves in a systematic and self-consistent
way. Moreover for the vortical receptivity, it overcame the difficulty of specifying the
profile of the disturbance in the free stream, by showing that the detailed profile
is largely irrelevant. This made an appropriate comparison between the theory and
experiments possible for the first time. A good agreement has been observed. Our
results also indicate that the boundary-layer receptivity to the free-stream turbulence
is much stronger than suggested by previous calculations.

The theoretical results for the acoustic receptivity have also been compared with
the relevant experiments. It is found that our first-order theory agrees very well with
measurements, while the second-order theory over predicts. This discrepancy remains
to be resolved by further investigations.

The author would like to thank Professor J. T. Stuart, Professor M. Gaster and
Dr S. J. Cowley for helpful discussions. Dr M. E. Goldstein and the referees are
thanked for their comments and suggestions, which have led to improvement of the
paper. The computations were carried out on a computer supported by EPSRC grant
GR/L65666/01.

Appendix A. The O(ε2) correction to the dispersion of T-S waves
The O(ε2) correction to the T-S wave dispersion can be obtained by seeking the

solutions to the quantities with the subscript ‘3’ in each deck and matching, as
was described in Smith (1979a) and § 3. The final outcome is the equation which
determines α3 and ω3:
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where the constants I1, I2 etc. denote the values at x0 = 1 of the integrals defined as
follows

I1(x) =
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In all the expressions above, the parameter a is arbitrary provided a 6= 0. Since the
Blasius profile UB is a function of the similarity variable ŷ = y/x1/2, it is convenient,
when evaluating these integral, to choose a = a0x

1/2 with a0 being independent of
x. It follows that I2, J0 and J∞ are all proportional to x1/2 so that their expansions
about x0 are

I2(x) = I2(0) + ( 1
2
I2(0)x1)R

−3/16 + · · · ,
J0(x) = J0(0) + ( 1

2
J0(0)x1)R

−3/16 + · · · ,
J∞(x) = J∞(0) + ( 1

2
J∞(0)x1)R

−3/16 + · · · .

 (A 6)

Appendix B. The constants r0, r1, r2 and the function U (2)
TS

r0 = 1
3
iα−1

1 (iα1λ0)
2/3(J∞ − J0)

(
Ai′(η0) + 2η2

0Ai(η0)
)− 2

3
λ−1

0 γ1η0Ai(η0)I2

+iω1(iα1λ0)
−1

{
2
3
η0Ai(η0)−

∫ ∞
η0

Ai(η)dη − 2

3

(iα1λ0)
5/3

α2
1γ1

[Ai′(η0)− η2
0Ai(η0)]

}
+ 2

3
i(α1γ1)

−1(iα1λ0)
2/3 (2α2

1 + β2)

γ2
1

α2

α1

(Ai′(η0)− η2
0Ai(η0))

+i(α1γ1)
−1(iα1λ0)

2/3

{
2

9

α2

α1

(
η3

0Ai′(η0) + Ai′(η0)
)

+
2

3

(
ω2

ω1

− α2

α1

)
η2

0(η0Ai′(η0) + Ai(η0))

}

− 2
3
λ−1

0

{(
ω2

ω1

− 5α2

3α1

)
η0Ai(η0) +

(
ω2

ω1

− 2α2

3α1

)
η2

0Ai′(η0)

}
. (B 1)



Receptivity of boundary layers with distributed roughness 131

r1 =
i(2α2

1 + β2)

α1γ
3
1

(iα1λ0)
2/3

{(
ω2

ω1

− 2

3

α2

α1

)
η2

0Ai(η0) +
2

3

α2

α1

Ai′(η0)

}
+

iω1(3α
2
1 + 2β2)

α2
1γ

3
1

(iα1λ0)
2/3Ai′(η0)− iα2(iα1λ0)

2/3

{
2β2

α2
1γ

3
1

+
3(2α2

1 + β2)

γ5
1

}
Ai′(η0)

−λ−1
0 α2

1γ
−1
1 I2

∫ ∞
η0

Ai(η) dη. (B 2)

r2 = −λ−1
0

{
ω2

ω1

η0Ai(η0) +
2

3

(iα1λ0)
5/3

α2
1γ1

[Ai′(η0)− η2
0Ai(η0)]− 2γ1I2

∫ ∞
η0

Ai(η) dη

}
.

(B 3)

U
(2)
TS =

[
1− ε

(
α2

α1

− q∞
)]{∫ η

η0

Ai(η) dη − β2
1

γ2
1

Ai′(η0) L(η)

}
+ε

{(
ω2

ω1

− α2

α1

)
η0(Ai(η)−Ai(η0)) +

1

3

α2

α1

(ηAi(η)− η0Ai(η0))

}

−εβ
2

γ2
1


[(

ω2

ω1

− 2

3

α2

α1

)
η2

0Ai(η0)− 2α1α2

γ2
1

Ai′(η0)

]
 L(η)

+

(
ω2

ω1

− α2

α1

)
η0Ai′(η0) L′(η) +

1

3

α2

α1

Ai′(η0)η  L′(η)

+

∫ ∞
η0

Ai(η) dη

Ai2(η0)

(
ω2

ω1

− 2

3

α2

α1

)
η0Ai′(η0)Ai(η)

 . (B 4)

Appendix C. Matching between the T-S wave solution and the upstream
forced response

To demonstrate more clearly that the T-S wave grows out of the forced response
in the pre-resonance region, we now show that these two solutions match in the
asymptotic sense. The vortical case will be used for the purpose of illustration. At an
arbitrary location in the pre-resonance region, x say, the forced response in the lower
deck has expansions similar to (3.62)–(3.65) provided that the T-S wave is excluded
and the mean-flow deviation suppressed. Then Ṽ4 and Ṽ5 would satisfy (3.98) and
(3.104), and their solutions can be written as (3.99) and (3.105) respectively, provided
of course that A and q2 are set to zero, and λ0 is replaced by λ. The solutions in the
upper and main decks are similar to those given in § 3.1 and § 3.3. Then on applying
the boundary and matching conditions, we find that q4 and q5 are determined by

q4 =
λFv

∆(λ)
eiαdx1 , (C 1)

q5 =

{(
ω1

α1

− γ1I2(x) +

(
1 +

α2
1

γ2
1

)
α2

α1

)
− ∆1(λ)

∆(λ)

}
q4 +

λFc

∆(λ)
eiαdx1 , (C 2)

where ∆(λ) and ∆1(λ) are defined by (3.75) and (3.87) respectively with λ0 being
understood as λ, the dependence on which is through η0, I2, J0 and J∞. A Taylor
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expansion of ∆(λ) about λ0 shows that as x→ x0,

q4 → λ2
0Fv

iα1b(λ− λ0)
= R3/16(N/σ)(−x1)

−1 eiαdx1 , (C 3)

indicating that q4 matches to A; see (3.113). Similarly, expanding ∆1(λ), and I2, J∞
and using the relations that

∆1(λ0) = 0,
∂I2

∂λ
(λ0) = −I2(0)/λ0,

∂J0

∂λ
(λ0) = −J0(0)/λ0,

∂J∞
∂λ

(λ0) = −J∞(0)/λ0,

we find that

q5 →
{{

ω1

α1

− γ1I2(0) +

(
1 +

α2
1

γ2
1

)
α2

α1

− λ0∆
′
1(λ0)

iα1b

}
N

σ
− λ2

0Fc

iα1λ1b

}
R3/16(−x1)

−1 eiαdx1 .

(C 4)
A comparison with (3.115) suggests that q5 matches to q2 if{

ω1

α1

− γ1I2(0) +

(
1 +

α2
1

γ2
1

)
α2

α1

}
b− λ0∆

′
1(λ0)

iα1

= λ0(r0 + r2). (C 5)

The above identity is verified by a direct calculation using (3.87).
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